
Extending the Open Source Social Virtual Reality Ecosystem to
the Browser in Ubiq

Sebastian Friston
Ben J. Congdon

sebastian.friston@ucl.ac.uk
ben.congdon.11@ucl.ac.uk
University College London

London, UK

Nels Numan
Klara Brandstätter

Lisa Izzouzi
nels.numan.20@ucl.ac.uk
k.brandstatter@ucl.ac.uk

l.izzouzi@ucl.ac.uk
University College London

London, UK

Felix J. Thiel
Jingyi Zhang

Daniele Giunchi
felix.thiel.18@ucl.ac.uk
jy.zhang@ucl.ac.uk
d.giunchi@ucl.ac.uk

University College London
London, UK

David Swapp
Anthony Steed
d.swapp@ucl.ac.uk
a.steed@ucl.ac.uk

University College London
London, UK

Figure 1: Six multi-modal proof of concepts of extending a social virtual reality system with web interoperability (from left
to right, top row first): remote environment control, remote video streaming from a user view, directly triggering a desktop
questionnaire for a user, online diagnostics and instrumentation, novel device support and eye tracking to control a character.
Additional images are available in the supplementary materials.

ABSTRACT
Social VR (SVR) systems are VR systems with a common subset
of features facilitating unstructured social interaction. In the real
world, social situations have many purposes, each with a different
set of requirements, and roles its participants take - creator, mod-
erator, performer, visitor, etc. Yet, common SVR systems typically
offer only a single client to users. Even if there are versions for
different platforms, there is a one-size-fits-all approach to the user
experience. Consequently users need to employ workarounds or

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

Web3D ’23, October 09–11, 2023, San Sebastian, Spain
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0324-9/23/10.
https://doi.org/10.1145/3611314.3615903

build their own functionality to support specific roles, where this is
possible at all. We argue that platforms need to develop more open
frameworks that support different processes and user interactions.
One way to do this is through using appropriate web standards and
an open messaging system in order to allow distributed clients that
can leverage the strongest features of heterogeneous computing
platforms. Supporting asymmetrical capabilities greatly increases
the scope of supported virtual social interactions and potential use
cases of SVR.We take a qualitative experimental approach to explor-
ing cross platform support in this way, from a designers perspective.
We use the open-source SDK Ubiq, and create a library that allows
building Ubiq Peers using web standards and thus clients that can
operate solely in a web browser or certain Javascript environments.
We validate our approach by demonstrating six proof of concept
demonstrators that would be difficult or impossible to achieve in
most other SVR systems, and report on what we encountered for
the benefit of other SVR designers.

https://orcid.org/0000-0002-0061-8519
https://orcid.org/0000-0002-7649-1569
https://orcid.org/0000-0003-2931-7653
https://orcid.org/0000-0002-8586-7804
https://orcid.org/0000-0002-9430-5731
https://orcid.org/0000-0002-7998-4270
https://orcid.org/0009-0009-3432-3514
https://orcid.org/0000-0003-1674-8876
https://orcid.org/0000-0002-9335-8663
https://orcid.org/0000-0001-9034-3020
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3611314.3615903
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611314.3615903&domain=pdf&date_stamp=2023-10-09


Web3D ’23, October 09–11, 2023, San Sebastian, Spain Friston and Congdon, et al.

CCS CONCEPTS
• Human-centered computing → Interaction paradigms; •
Networks→ Application layer protocols; •General and reference
→ Cross-computing tools and techniques.

KEYWORDS
social-vr, interoperability, toolkits

ACM Reference Format:
Sebastian Friston, Ben J. Congdon, Nels Numan, Klara Brandstätter, Lisa
Izzouzi, Felix J. Thiel, Jingyi Zhang, Daniele Giunchi, David Swapp, and An-
thony Steed. 2023. Extending the Open Source Social Virtual Reality Ecosys-
tem to the Browser in Ubiq. In The 28th International ACM Conference on
3D Web Technology (Web3D ’23), October 09–11, 2023, San Sebastian, Spain.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3611314.3615903

1 INTRODUCTION
Social VR (SVR) systems are VR systems with a common subset of
features facilitating unstructured social interaction. SVR has been
imagined in fiction for decades, and the first SVR systems were
constructed only shortly after the first VR systems [Singhal and
Zyda 1999]. This is in part because VR system requirements such
as the ability to capture and embody a person in a digital space
lend themselves well to computer-mediated communication - once
a person is embodied digitally, it is a short step to transmit this
representation to others.

Very few of the many contemporary SVR platforms [Schulz 2020]
currently support cross-platform play other that they may support
a similar bespoke client on multiple platforms (e.g. across variants
on Android for Meta’s devices, Pico’s devices, etc. or Windows
variants). Thus while they may support both desktop-based and
mobile-based headsets, they use the same programming environ-
ment, and almost certainly the same engine. Even Meta, whose
stated aim is to create an omnipresent metaverse, which implies
cross-platform interop [Havele et al. 2022], supports only the latest
headsets.

This is not surprising, as cross-platform play has many chal-
lenges. Apart from low-level considerations such as protocol sup-
port, serialisation and endianness, some concepts such as scene
graphs or dynamic typing might exist on one platform without an
analogue on another. Cross-platform support is essential to increase
user bases and take advantage of network effects. Platforms such
as Roblox now support cross-browser and VR play [Sammy 2022].

There is yet another level though. Re-creating the same experi-
ence through different mediums supports an important use case.
However, where asymmetry is supported, it opens up a whole new
set of possibilities. The strengths of each platform can be lever-
aged to maximise the functionality of the system-as-a-whole, while
minimising development time by making the best tool for the job
available. The value of this becomes apparent when considering dif-
ferent types of users. In SVR, different participants take on different
roles: attendee, content-creator, moderator, performer, maintainer,
and many more. Each role has specific interface requirements, but
few SVR systems consider this.

We suggest that SVR systems need to have many more modal-
ities than simply embodied interaction to succeed in the general
use cases they are targeting. In this paper, we discuss the role of

asymmetric cross-platform support, specifically interaction with
the web. By exposing events and streams that underpin the SVR
over web standards, an SVR that is primarily experienced through
a native client can interact with standard web technologies.

Such systems are very rare however. Mozilla Hubs [Mozilla Cor-
poration 2021], for example, is the only SVR based entirely on open
standards, but even its client is still symmetrical.

To explore this topic, we describe how we extended the open-
source SVR system Ubiq to support such inter-operation. Ubiq is a
toolkit for SVR research, teaching and development. It was primar-
ily written as a Unity package that allows developers to quickly
develop complex immersive SVR applications. We developed a set
of components in order to create Javascript-based Ubiq Peers, with
a specific focus on peers that would work in web browsers.

We discuss Ubiq’s use case and operation, the development of
this new functionality, and how we designed a set of demonstrators
to validate its implementation and show what can be done with it.
Our aim is both to argue for the benefits of building SVR systems
from heterogeneous clients this way, and to distil what we have
learnt for other practitioners who wish to do so.

2 PREVIOUS WORK
2.1 Commercial Systems & Use Cases
While many commercial SVR systems are nominally symmetrical,
the need for different modalities shows up in a number of ways.
The Under Presents, an immersive VR theatre experience, provides
actors with a virtual dressing room containing non-diegetic 2D
menus in 3D. These allow actors to give themselves abilities, such
as teleporting attendees, to aid their performances [Coulombe 2020].
Producers ofOut Of This World [Greenhalgh et al. 1999], a VR-based
game show, combined dedicated virtual camera controls with real-
world analogue mixers to live-broadcast television from inside an
SVR. Desert Rain [Koleva et al. 2001] employed a variety of physical
control systems, in addition to functional props such as swipe cards,
to orchestrate a mixed reality theatre experience where the mixing
of the virtual and real was used for dramatic effect. In the VR game
Keep Talking and Nobody Explodes, asymmetry is embraced as a me-
chanic. Some players use real-world resources to help an immersed
user complete a task [Steel Crate Games 2023]. Saffo et al [Saffo
et al. 2021] replicated lab-based VR studies in VRChat. They noted
how VRChat’s graphical programming language allowed them to
re-create experiment logic, but a major limitation was the inability
to communicate data outside of the client. Vitillo used VRChat to
stage a virtual concert [Vitillo 2021]. They remarked on its strong
abilities in virtual staging, but severe limitations in crowd sizes, and
in controls to enable synchronisation or handle disruptive users.
Slater et al [Slater et al. 2000] created a bespoke facial expression
controller based on mouse-gestures for virtual rehearsal in SVR. In
RecRoom [Brown 2021], users can re-skin objects with pre-existing
functionality. The client implements a number of games, such as
Charades, in which users have different roles with specific abilities.
In other situations, users can unlock abilities through ‘room keys’.
Virbella adopts a traditional user-admin-owner model where users
are assigned a fixed role [Virbela 2022]. Data exchange remains a
consideration; for example, organisers of a virtual innovation event

https://doi.org/10.1145/3611314.3615903


Extending the Open Source Social Virtual Reality Ecosystem to the Browser in Ubiq Web3D ’23, October 09–11, 2023, San Sebastian, Spain

were unable to marry-up Virbela attendees with ticket holders man-
aged on another platform. The authors also noted concerns about
privacy - not because of the way the VR world operated, but simply
due to it being a digital medium with opaque data flows [Jauhiainen
2021]. It is interesting to contrast RecRoom’s metaphor, where au-
thority is granted by being in a place or holding an object, with
The Under Presents use of a dedicated non-diegetic interface, and
Virbela’s, of signing in with different accounts. Browser support
is rare, though not non-existent ([Sammy 2022]) for games, but
more common in productivity tools. For example, Spatial [Spatial
2023] and Glue [Glue 2023] have browser clients. Other systems (e.g.
Engage [Engage 2023]) attempt as broad cross-platform support as
possible, but do not include the web browser.

2.2 Toolkits
VR systems, and especially SVR systems, share a consistent subset
of features, leading to a number of toolkits at different levels. These
began with APIs aimed at supporting complete distributed graphics
applications, such as Blue-c [Naef et al. 2003] and Wolverine [Char-
davoine et al. 2005], on which VR functionality could be added.
Systems such as SCIVE [Latoschik et al. 2006] and FlowVR [Al-
lard et al. 2004] aimed to allow building distributed VR systems
as an arrangement of heterogenous nodes, and defined protocols
through which new components could be added. These contrast
with MASSIVE [Greenhalgh and Benford 1995] and DIVE [Carlsson
and Hagsand 1993], which aimed to provide an already functional
SVR architecture on which users could build specific applications.
Nowadays, most VR applications are built using engines such as
Unity or Unreal. Unreal has a built-in networking model. For Unity
there are a number of networking SDKs (some of which are also
available to Unreal developers who need specific features) including
Photon [Exit Games 2021], DarkRift [Dark Rift 2021], MLAPI [Unity
Technologies 2021] and Mirror [Mirror 2021]. There are also many
general purpose VR SDKs, such as MRTK [Microsoft 2022], which
we leave to various application specific surveys (e.g. [Wolfel et al.
2021]).

One of the most interesting tools to consider is Ready Player
Me (RPM) [Altundas and Karaarslan 2023]. Users design avatars in
browsers which can then be loaded into a variety of SVR platforms.
As far as we are aware RPM is the only example of the Feature-as-
a-Service model applied to SVR. This model could play a significant
role in the future of a federated metaverse.

2.3 Standards
For the web, the array of standards is now deep enough to support
a federation of complete 3D XR worlds running entirely in the
browser. These include XR device interaction (WebXR) as well as
interactive 3D scene descriptions (X3DOM) and interchange of
video (MP4), images (JPEG) and 3D models (glTF) [Havele et al.
2022]. Mozilla Hubs is a proof-of-concept SVR application built on
these technologies [Mozilla Corporation 2021].

For distributed computing, the Virtual Reality Peripheral Net-
work (VRPN) provides a device and network independent standard
for combining VR peripherals [Ii et al. 2001]. A more recent ex-
ample is the Robot Operating System (ROS) [Stanford Artificial
Intelligence Laboratory et al. 2018], a set of standards and tools for

building graphs of message passing components. ROS is designed
for robotics but could build any distributed computing system.

On the web, the W3C maintains standards such as Simple Object
Access Protocol (SOAP) for arbitrary object passing [W3C 2023a].
WebSockets and HTTP, for transport, are also standardised. The
existence of non-standard, if open, solutions such as Socket.io sug-
gests there may still be a standards gap at the messaging level
however [SocketIO 2023]. The web also presents security stan-
dards [W3C 2023b]. It is particularly interesting to consider this,
because the approach - based on sandboxing untrusted code - is
different to that of many VR operating systems, which use signing
to execute trusted code.

2.4 Summary
There is a broad set of mature open standards at the many layers
involved in building SVR. There is also a long history of research
into system architecture. However, almost all contemporary social
VR applications offer only closed clients. These clients, if available
formore than one platform, aim for parity between platforms, rather
than embrace the differences between them. Even those built using
open standards are designed around symmetrical experiences.

As we have seen however, this closed nature and enforced sym-
metry can be an impediment to a variety of real and desirable use
cases. Users have to work around the design of the client, where
this is even possible.

3 MOTIVATION & METHODOLOGY
We believe the potential of SVR systems can be greatly enhanced
by opening them up to platforms other than embodied VR. Just
as in the real-world, building a functioning social space involves
many tasks, and not all are equally suited to being embodied in a
contemporary HMD. This is clearly imagined by anyone who has
tried to input text using a VR keyboard. As we have seen, when
given the choice, producers use a mix of clients, and usually a mix
of virtual and real control systems. Where teams are limited to a
single client, they often have to build their own interfaces - but
depending on the client these can be cumbersome to build and/or
use. Teams need the ability to see what is going on at multiple
levels, and to quickly manipulate the environment or other users.
These interfaces are best built from a combination of virtual and
real components, with the virtual ones using whatever framework
is most productive. Extracting data from systems is also important.
This is especially so for researchers, but we also see commercial
examples, such as the need to integrate ticketing systems.

Simply using open standards exclusively is not enough though.
If clients assume symmetrical capabilities, the burden of supporting
a specific platform becomes greater with each feature, and some
will be excluded entirely. Systems must be open at the messaging
layer. Requiring only a subset of functionality to be shared allows
more clients to contribute to the state of the SVR, even if each can
only represent and communicate with a part of it.

Symmetrical cross-platform interoperability is already challeng-
ing however. Examples of symmetrical SVR systems are few, and
asymmetrical examples fewer still. To explore this topic, we take a
qualitative experimental approach, attempting to solve problems
in an open system. Our aim is to demonstrate the validity of our



Web3D ’23, October 09–11, 2023, San Sebastian, Spain Friston and Congdon, et al.

Figure 2: Diagram showing two Ubiq Peers, each with 3-4
Components, exchanging a message via the server.

argument, and also to distil lessons from our attempts for other SVR
designers. We implement heterogenous cross-platform support for
the open-source SDK Ubiq, extending the social fabric to Javascript
environments, especially the browser.

The modern web browser is one of the most capable comput-
ing platforms. Browsers are ubiquitous and robust. They excel at
constructing rich, interactive 2D interfaces. Though less commonly
used, they also support 3D, including immersive 3D. They have
considerable device capabilities, including for USB and Bluetooth.
They have the ability to do multimedia processing, including node-
based computation, such as withWebAudio. Further, this is all made
available in a secure sandbox that can run anywhere. By supporting
the browser, SVR designers can leverage these abilities to build new
modalities. Primarily this is oriented around building 2D interfaces
for multiple types of user, however we also consider the browser
as a data source, and a co-processor.

4 UBIQ
Ubiq is an open-source SVR toolkit for research and teaching [Fris-
ton et al. 2021]. Ubiq’s aim is to address features that traditional
commercial platforms do not. These include the ability for users
to run their own server, to have full source code access, to extract
metrics and data, and to run arbitrary code on users’ machines. In
this section, we review some concepts that are important for under-
standing or relevant to cross-platform interop. Figure 2 illustrates
message passing between two Ubiq Peers, and is explained in detail
at the end of this section.

4.1 Messaging
A Ubiq session consists of a number of Peers. Each Peer has one
or more networked Components - objects that can send or receive
messages. Components are responsible for deciding when to trans-
mit, performing serialisation and deserialization, and acting upon
the contents of the message to drive the larger application. The

networked behaviour is distributed among various Components,
following a composition-based programming model. Messages are
binary blobs, but usually contain JSON. Some messages, such as
avatar transforms, use binary encoding to avoid serialisation over-
heads. This is up to the developer.

4.2 Addressing
Components send messages to each other across Ubiq’s messaging
layer. Components have Ids, and Messages are addressed to an Id.
Ubiq uses application layer multicasting, so all Components with
the same Id receive messages. Ids are 64-bit. Some Ids are reserved,
but otherwise are generated by each Peer as required. All Peers have
a ‘root’ NetworkScene Component with an Id unique for that Peer,
for example. In Figure 2, the two NetworkScene Components have
generated Ids of 0xA6 and 0x9B, while the server has a reserved
Id of 0x01. A common design pattern is for Peers to compute Ids
deterministically in order for Components to communicate without
having to synchronise Ids explicitly. This is often done by using
an already synchronised Id as a namespace. For example, an Id
reserved for a service can be hashed with a Peer’s NetworkScene’s
Id, to uniquely identify the instance of that service on that Peer.

4.3 Server and Rooms
A Peer Group is a set of Peers that exchange messages. Peers can
be connected in a literal peer-to-peer architecture or via Ubiq’s
rendezvous and relay server. (The messaging layer and application
layer multicast work identically in any case.) The server is written
in NodeJs and allows Peers to join a Peer Group (a ‘room’) through
the use of join codes or UUIDs. Join codes and UUIDs are shared out-
of-band. Rooms with a given UUID are created on demand, allowing
UUIDs to be baked into applications so they will automatically join
the same room on start-up, or computed deterministically based
on some other criteria.

4.4 Cross Platform Use
Peers are simply any process that can send and receive Ubiq mes-
sages. There are no requirements that a given Peer is embodied,
for example. This allows very minimal Peers to be created, and
functionality to be federated between Peers dedicated to particular
services. Ubiq-Genie [Numan et al. 2023] exploited this feature,
creating Peers to provide an interface to different GANs or LLMs
for synthesising voice, text and images in response to user state-
ments. Ubiq Peers have been implemented in C# & Javascript (Js),
in multiple platforms that support these languages. In theory, Ubiq
could be supported in any language that supports its underlying
network protocols.

A diagram of Ubiq message passing between two platforms is
shown in Figure 2. In this diagram, two Peers are connected via a
server. Each Component is shown with its address. The addresses
shown in the diagram are valid, but would be more complex in
real world use. The Peers have already negotiated membership to
the same room. They do this by sending messages to the Server
Component (at address 0x01) to start and stop forwarding between
sets of connections. Component 0x1A is sending a message to its
counterparts on other Peers in the room. We see how the message
is passed from the Component to the NetworkScene (highlighted in



Extending the Open Source Social Virtual Reality Ecosystem to the Browser in Ubiq Web3D ’23, October 09–11, 2023, San Sebastian, Spain

Figure 3: Diagram showing the project structure and the
dependencies and processing steps for the code and artefacts.

blue; 0xA6 for the Unity Peer), which then passes it via TCP to the
server, which forwards it to all other members of the room (mul-
ticasting). In the browser Peer, the NetworkScene (0x9B) receives
the message (via a WebSocket) and forwards it to the Component
with a matching Id.

5 BROWSER PEER
In this section, we design a Js library that allows browser pages to
join Peer Groups, making the strengths of the browser and other Js
contexts available to Ubiq users.

5.1 Architecture
The library is provided as an Ecmascript (ES) module that can be
imported into another module (e.g. in NodeJs) or loaded into a
page. The development practice is to write all code as CommonJS
modules that can be utilised by NodeJs, so any class could be used in
a page’s main thread, a WebWorker, or in a headless Node process.
Rollup1 is used to package the classes into a single ES library, insert
polyfills to hide differences between Node and the browser. This is
illustrated in Figure 3.

No platform-specific conditionals are required in the code, though
sometimes the use of an API must be carefully considered so that it
has the same behaviour on Node and in the browser. For example,
the ‘binaryType’ member of ‘WebSocket’ must be explicitly set to
“arraybuffer”, which has no effect in Node, but is necessary to get
the right type in the browser. ‘Buffer’ must be explicitly imported,
even though it is implicitly available in Node.

5.2 Protocol
The first thing a Peer does is make a connection to a Peer Group.
Android and PC clients use TCP. The browser library uses Web-
Sockets. WebSocket Server support was added to the server. As
messages are received, their binary payload is interpreted as a Ubiq
message and inserted into the Peer Group via the same method calls
the TCP connections use. In Js, incoming messages are wrapped
in an object. Their address is read through binary operations on
the payload ArrayBuffer. The wrapper provides helper methods to
interpret the Ubiq payload as strings or JSON objects, mirroring
the C# API. For binary messages, Js users perform deserialisation
themselves in their Components (e.g. using DataViews).
1https://rollupjs.org/

Figure 4: Diagram showing the project structure and the
dependencies and processing steps for the code and artefacts.

5.3 Object Graph
In Unity, all Components are attached to scene graph nodes. Compo-
nents use this graph to infer relationships based on their positions
relative to other Components. Components could find the (geodeti-
cally) closest instance of a specific class to generate deterministic
Ids, for example. Ubiq uses this mechanism to have Components
associate with their closest NetworkScene, without having to main-
tain explicit references, aiding modularity in Unity.

Js does not have an inherent scene graph, and we do not assume
users wish to create 3D applications. As such as Js Components
take in their NetworkScene as a constructor parameter, ensuring
that it is unambiguous, and never null. Components can still find
other components registered to the NetworkScene by class name, by
enumerating all registered objects by the constructor name. There
is still an object graph, but it is typically much flatter than in Unity.

These different approaches make the most of each platform:
in Unity, the execution order is hidden and cannot be controlled,
so relationships are defined by locations in the object graph. In
Js, initialisation is sequential and relationships are closer to the
explicit ordering (Figure 4).

5.4 Ids & Hashing
Ubiq encourages generating Ids deterministically to reduce explicit
synchronisation and make development simpler. This is done by
hashing one or more variables such as strings, or other Ids, together
into a 64-bit result that is used as the address. One challenge is that
string hashing implementations can differ by platform, so all string
hashing in Ubiq is explicitly declared to use MD5 hashes of UTF-8
encodings. MD5 is simple enough that it can be re-implemented
relatively easily. It is also reasonably fast, as hashes do not have to be
cryptographically secure. A challenge of hashing in Js is that many
functions take advantage of integer overflow behaviour tomaximise
diffusion, however such bitwise overflow does not occur when
using many of the Js math operators [Darpinian 2022]. We therefore
design hash functions around theMath.imul function, which has the
same overflow behaviour as the C operation. (Another possibility
would be to perform other operations with bitwise operators, or
to use WebAssembly.) Similarly, while Js has the concept of BigInt,
it does not represent a 64-bit number in the same way as a long
in C/C++/C#. We therefore store NetworkIds as two Js Numbers,
which can be considered 32-bit integers for the purpose of hashing.

The 64-bit Ids do not have to be globally unique, but do need
to be well distributed enough to avoid collisions within the Peer
Group [Jesus et al. 2006]. Browsers try to minimise the amount of

https://rollupjs.org/


Web3D ’23, October 09–11, 2023, San Sebastian, Spain Friston and Congdon, et al.

reliable system information available in order to reduce the poten-
tial for fingerprinting [Laperdrix et al. 2020]. Therefore, we rely on
a function that is a combination of the performance counter and
Math.random to generate ‘unique’ Ids. A similar approach is used
to create v4 GUIDs, though we may soon be able to transition to
using the crypto namespace [contributors 2023] as all connections
are secure by default in the latest implementation of Ubiq for the
browser.

5.5 Design-Time Ids
A feature of Ubiq’s server is that any Peer can create a room with
a specific GUID on-demand, allowing GUIDs to be used as pre-
shared secrets for automated rendezvous. This presents a challenge
for documentation and sample production however. Ideally this
would be demonstrated by having all samples connect to the same
room automatically, but if a GUID were baked into the source all
users would end up in each other’s samples. Consequently, Ubiq is
designed so that on a new checkout the ‘sample’ GUID is initialised
on first-use, and used from then on.

This is a major challenge for the browser because it does not
have access to the host’s filesystem, so is unable to generate and
initialise a GUID itself. At best it is able to detect if the GUID is
uninitialised, and report this to the user or join a different room.
This is not ideal and breaks the status of the browser Peer as a
first-class Peer, but we are currently unaware of a supported way
to break the sandbox.

5.6 Audio Communication
Ubiq uses WebRTC (RFC 8825) [Kleinhout 2021] to facilitate peer-
to-peer audio. WebRTC stacks create their own connections, ideally
RTP over UDP, or through TURN servers over TCP as a fallback. To
instruct twoWebRTC stacks to establish a connection, the host con-
figures the media stream(s) (such as an audio from a microphone)
and pass signalling messages between them. Despite being a stan-
dard, WebRTC implementations on different platforms advance at
different rates, and divergence and bugs can result in failure to
establish connections. In Ubiq, a dedicated Component manages
signalling for a single WebRTC PeerConnection. Each pair in a
Group has a dedicated PeerConnection, and so pair of Components
with a shared Id used to exchange its signalling messages. Ubiq
supports four WebRTC stacks: a native .NET implementation, a
Unity package based on Chromium, a Microsoft package also based
on Chromium, and the browser’s implementation. The Ubiq Com-
ponent has its own protocol which can identify which back-ends
in use and make adjustments to the offer and answer exchange
ordering to ensure the stacks inter-operate correctly, based on what
we have identified works empirically2.

6 USE CASES AND EXAMPLES
In this section, we demonstrate various things that can be done
with browser Peers. The demonstrations are based on some of the
challenging use cases discussed in Section 2. Specifically, the need
for performers andmoderators to have abstract views and dedicated

2Interested readers may refer to the comments in the WebRTC.jslib plu-
gin at https://github.com/UCL-VR/ubiq/blob/master/Unity/Assets/Runtime/Voip/
Implementations/Web/Plugins/WebRTC.jslib

controls over environment (e.g. The Under Presents, Vitillo). For
producers to bind novel hardware (e.g. Desert Rain). For developers
to inject or extract data (e.g Jauhiainen), and build asymmetric
interfaces (e.g. Keep Talking and Nobody Explodes). Browser peers
run entirely locally from static resources (HTML, CSS & Js), and
simply require loading the web page.

6.1 Wizard-of-Oz Control Panels
In this example (Figure 1, Top-Left), an immersed participant navi-
gates through a set of doors. At each they interact with a button,
notifying an experimenter via a browser-based control panel. The
experimenter can use the panel to open doors when they are ready
for the participant to proceed. Traditionally this would be achieved
by having a keyboard or other device attached to same device as
the participant. Not only is this becoming more difficult on stan-
dalone devices such as the Quest, but a web page is easier to write
and extend. In a symmetric client, developers would have to build
in-game control systems, which is not only tedious, but possibly
also challenging to do while also preventing ‘regular’ participants
gaining access to it also.

6.2 Streaming Immersive Views
Spectating can be an important aspect of VR. An experimenter may
wish to see a view of the world, or a view might be generated for an
audience. VR devices such as the Quest can stream to companion
apps, and SteamVR supports showing a VR view on amonitor on the
HMD PC. These however are only accessible in one place, and have
limited configurability. Using WebRTC, Ubiq can stream arbitrary
views from inside an embodied Peer to the browser. In this sample
(Figure 1, Top-Middle), the browser Peer creates a virtual camera
in a specific Peer. This view is platform agnostic so works on any
device and can be streamed anywhere. The user can configure it,
including creating entirely new viewpoints, at runtime. Multiple
streams could be combined in one page to build a control room
type view.

6.3 User Interfaces
VR experiments commonly ask participants to complete question-
naires. However, both building and answering questionnaires in 3D
can be tiresome. While separate solutions such as Google Forms
are available, they require records to be married up post-hoc, a po-
tential source of error, and the forms cannot react in real-time. This
example (Figure 1, Top-Right) re-creates a simple pseudo-haptics
experiment. A web browser attaches to the same session as a VR
headset. When appropriate, the experiment state machine prompts
the user to remove the headset and answer questions displayed
in the web page. The VR process and browser communicate so
that users must proceed in the right order. Combined with Ubiq’s
distributed logging, records from both sources end up in the same
place automatically.

6.4 Diagnostics and Projections
This sample (Figure 1 Bottom-Left) demonstrates instrumentation
of an SVR session. The browser can create widgets to listen on ar-
bitrary addresses and decode binary messages from user-supplied

https://github.com/UCL-VR/ubiq/blob/master/Unity/Assets/Runtime/Voip/Implementations/Web/Plugins/WebRTC.jslib
https://github.com/UCL-VR/ubiq/blob/master/Unity/Assets/Runtime/Voip/Implementations/Web/Plugins/WebRTC.jslib


Extending the Open Source Social Virtual Reality Ecosystem to the Browser in Ubiq Web3D ’23, October 09–11, 2023, San Sebastian, Spain

formats, all alterable at runtime. The widgets can also send mes-
sages. These controls can be used, for example, to detect if user
Components are transmitting incorrect data, or not transmitting at
all. Users can also use different approaches to visualise the virtual
world. In one way, streams of avatar updates used to drive a 2D
‘projection’ of the world into a WebGL canvas. In another, FBXs are
loaded into a Three.js3 scene to show a locally rendered birds-eye
view in 3D. As a demonstration of flexibility, opening two pages
and giving a new Network Id to two widgets allows users to create
a simple chat tool, without any functionality in Ubiq or the sample
dedicated to this.

6.5 Bluetooth Interaction
A recent addition to browsers is support for pairing Bluetooth de-
vices. In this example (Figure 1, Bottom-Middle), we program a BLE
(Bluetooth Low Energy) enabled Arduino4 to send measurements
from its Inertial Measurement Unit (IMU). This is paired in the
browser, and the IMU data is forwarded to a virtual world, where it
is used to control the gravity vector of the virtual environment’s
physics simulation.

6.6 Eye Tracking
The browser also presents possibilities for computation. In this ex-
ample (Figure 1, Bottom-Right), we use the WebGazer [Papoutsaki
et al. 2016] library to perform eye tracking using a webcam, while
a browser user interacts by using a 2D video-game style interface.
The browser user puppeteers a RocketBox [Gonzalez-Franco et al.
2020] avatar with movable eyes. Eye direction is controlled by pro-
jecting the user’s gaze into the camera frustum as if it were placed
at the avatar’s head. This allows immersed users to perceive the
browser user’s gaze. The 3D world in the browser is rendered using
Three.js.

The vast majority of SVR systems have no device support outside
of the VR interaction devices inherently supported by the VR SDKs
used to build them. Thus getting device data into such clients would
usually involve emulating other interaction devices such as mice
or keyboards.

7 DISCUSSION
Many SVR use cases have requirements that cannot be achieved by
a single client or single set of embodied metaphors. For example,
producers may want a disembodied or birds-eye view of the experi-
ence, and the ability to make quick changes. Researchers may want
to extract data or observe their participants. When building control
systems, flexibility in interface design is key to maximising effi-
ciency. In many cases there are standard designs (e.g. lighting desks
and analogue mixers) which are known and preferred for some
tasks. Trying to build interfaces in a one-size-fits-all client may be
possible - for some situations - but rarely will they be optimal.

We argue that modalities are not simple independent features.
Instead, we consider capabilities (real or digital), social roles, and
social situations to be highly inter-dependant. Different capabili-
ties and interfaces have affordances for different roles, and social
situations are defined by how roles mix. Further, how a capability
3https://threejs.org/
4An Arduino Nano 33 BLE: https://store.arduino.cc/products/arduino-nano-33-ble

is gained - e.g. by having it associated with account, by being in
a place, or by having possession of a physical device - itself has
information in how the social situation is structured and expected
to play out. The ability to compose capabilities and platforms in
different ways is important then for exploring the full range of
potential virtual social experiences.

Additionally, apart from interfaces, opening up systems allows
interaction with autonomous processes. This gives designers much
more flexibility in how to achieve functionality in mixed-reality
systems. Examples include enabling interaction with physical props,
performing tasks such as eye-tracking with devices dedicated to
this purpose, or leveraging non-portable stacks such as LLMs.

Across a number of demonstrators we show how the browser
can be leveraged to quickly build efficient and maintainable user
interfaces for different roles. We also show new possibilities for
visualisation through streaming local renders, and integration of
hardware devices. Our demonstrations aim to show a wide breadth,
however the interop required of the developer is relatively simple -
consisting primarily of sending serialised JSON. This though can
be deceptive. It doesn’t mean that interop is restricted only to
common transport & serialisation. Many transport and serialisation
protocols have extensive cross-platform support (e.g. WebSockets
& MsgPack). While this support is necessary, a working system
must also have a common addressing and identification system,
security model, and conventions. It is these that we consider in this
paper. We see for example the challenge of designing APIs that can
work with multiple metaphors and graph structures, and the risk
of relying on functions and types that may not be available on all
platforms. It is achievable, but requires care and is not something
that can be added in at a later date without engagement from
the SVR maintainers. While we have experimented in Ubiq, SVR
systems are defined as such by a common subset of functionality.
The challenges and solutions described we would expect to apply
to many similar systems as they will undoubtedly share the same
goals and metaphors, and perhaps even many of the same software
components and protocols.

Another consideration is portable representations vs open mes-
saging. Standards such as X3DOM offer portable representations of
functional worlds. Unity, supporting cross-compilation, arguably
does something similar. Approaching multi-modal use by using
portable representations and open messaging are quite different.
Standardised representations require all platforms to support the
full range of functionality, whereas with an open messaging layer,
only subsets of each system need to have a mutual understanding.
This is a design consideration rather than a technical one; an X3D
scene could use any number of technologies to communicate with
say, a Node process, for example. However, the ability to build a
system from clients that only partially overlap is an important part
of leveraging platform heterogeneity, and therefore an important
consideration.

One of the arguments for closing a system is security. Ubiq
operates in a high-trust environment not available to game devel-
opers, for example, due to concerns such as cheating. However
here the web is especially amenable because its security model is
built around running arbitrary code in sandboxes associated with a
trusted origin. It could be imagined that this security model could
be leveraged to create an origin associated within a particular group

https://store.arduino.cc/products/arduino-nano-33-ble


Web3D ’23, October 09–11, 2023, San Sebastian, Spain Friston and Congdon, et al.

concept on a given platform, and this could allow JavaScript in the
browser to be safely executed, isolated from other domains.

8 CONCLUSION
Asymmetric cross-platform support that can leverage the heteroge-
neous parts of different computing platforms is rare in contempo-
rary SVR. We argue, however, that this is a mistake, and that the
full potential of SVR systems will only be reached when systems
can be composed of different modalities. This is so they can sup-
port esoteric functions, but also the different roles that underpin
different social situations.

We have experimented with an approach to cross-platform in-
teroperability in the browser with the open-source SDK Ubiq. We
implemented support for Ubiq in a Js library for both the browser
and NodeJs. We validated our implementation with a number of
proof-of-concepts based on real-world use cases, that would be
challenging or impossible to support in most contemporary SVR
systems. We described the different levels at which we had to sup-
port inter-operation, where they could diverge and where they had
to remain the same, and the technical challenges involved in doing
so. We find that cross-platform support like this is not straightfor-
ward. Usually only system creators have deep enough access to do
it, and likely it will require changes to core functionality.

While there are improvements to be made, our implementation
is successful. We show a variety of proof of concept modalities to
validate both our implementation and demonstrate the value that
can be achieved by leveraging heterogeneous computing platforms.
Specifically, the modern browser. Our hope is that others working
in the social VR space recognise the importance of asymmetric
cross-platform support, and can learn from our technical work,
especially the need to consider how cross-platform support must
be baked-in from the start. All the source code for the Js library
and the samples demonstrated above, is maintained on GitHub at
https://github.com/UCL-VR/ubiq/tree/samples-browserextended.

ACKNOWLEDGMENTS
This work was partly funded by United Kingdom EPSRC project
Graphics Pipelines for Next Generation Mixed Reality Systems
(grant reference EP/T01346X/1), EU Horizon 2020 project RISE
(grant number 739578), EU Horizon 2020 project CLIPE (grant num-
ber 860768) and EUHorizon 2020 project PRIME-VR2 (grant number
856998).

REFERENCES
Jérémie Allard, Valérie Gouranton, Loïck Lecointre, Sébastien Limet, Emmanuel Melin,

Bruno Raffin, and Sophie Robert. 2004. FlowVR: A Middleware for Large Scale
Virtual Reality Applications. In Parallel Processing. 10th International Euro-Par
Conference. Springer Berlin Heidelberg, 497–505. https://doi.org/10.1007/978-3-
540-27866-5_65 ISSN: 03029743.

Sercan Altundas and Enis Karaarslan. 2023. Cross-platform and Personalized Avatars
in the Metaverse: Ready Player Me Case. In Digital Twin Driven Intelligent Systems
and Emerging Metaverse, Enis Karaarslan, Ömer Aydin, Ümit Cali, and Moharram
Challenger (Eds.). Springer Nature Singapore, Singapore, 317–330. https://doi.org/
10.1007/978-981-99-0252-1_16

Cameron Brown. 2021. RecRoom Developer Blog - The Circuits Handbook. https:
//blog.recroom.com/

C. Carlsson and O. Hagsand. 1993. DIVE A multi-user virtual reality system. In
Proceedings of IEEE Virtual Reality Annual International Symposium - VRAIS ’93.
394–400. https://doi.org/10.1109/VRAIS.1993.380753

François Chardavoine, Sylvain Ageneau, and Benoît Ozell. 2005. Wolverine: A Dis-
tributed Scene-Graph Library. Presence: Teleoperators and Virtual Environments 14,
1 (2005), 20–30. https://doi.org/10.1162/1054746053890297

MDN contributors. 2023. Crypto: randomUUID() method. https://developer.mozilla.
org/en-US/docs/Web/API/Crypto/randomUUID

Alex Coulombe. 2020. Let’s Dive Into The Under Presents: Tempest.
https://medium.com/alive-in-plasticland/lets-dive-into-the-under-presents-
tempest-pt-1-2d1ef2168c5f

Dark Rift. 2021. DarkRift Networking. https://www.darkriftnetworking.com/
James Darpinian. 2022. Integer math in JavaScript. https://james.darpinian.com/blog/

integer-math-in-javascript
Engage. 2023. Engage. https://engagevr.io/
Exit Games. 2021. Photon. https://www.photonengine.com/
Sebastian Friston, Ben Congdon, David Swapp, Lisa Izzouzi, Klara Brandstätter, Daniel

Archer, Otto Olkkonen, Felix J. Thiel, and Anthony Steed. 2021. UBIQ: A system to
build flexible social virtual reality experiences. In Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology, VRST. Association for Computing
Machinery. https://doi.org/10.1145/3489849.3489871

Glue. 2023. Glue. https://www.glue.work/
Mar Gonzalez-Franco, Eyal Ofek, Ye Pan, Angus Antley, Anthony Steed, Bernhard Span-

lang, Antonella Maselli, Domna Banakou, Nuria Pelechano, Sergio Orts-Escolano,
Veronica Orvalho, Laura Trutoiu, Markus Wojcik, Maria V. Sanchez-Vives, Jeremy
Bailenson, Mel Slater, and Jaron Lanier. 2020. The Rocketbox Library and the Utility
of Freely Available Rigged Avatars. Frontiers in Virtual Reality 1 (Nov. 2020), 561558.
https://doi.org/10.3389/frvir.2020.561558

C. Greenhalgh and S. Benford. 1995. MASSIVE: a distributed virtual reality system
incorporating spatial trading. Proceedings of 15th International Conference on Dis-
tributed Computing Systems, 27–34. https://doi.org/10.1109/ICDCS.1995.499999
Publisher: IEEE Comput. Soc. Press ISBN: 0-8186-7025-8.

Chris Greenhalgh, John Bowers, Graham Walker, John Wyver, Steve Benford, and Ian
Taylor. 1999. Creating a live broadcast from a virtual environment. In Proceedings
of the 26th annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’99. ACM Press, 375–384. https://doi.org/10.1145/311535.311591

Anita Havele, Nicholas Polys, William Benman, and Donald Brutzman. 2022. The Keys
to an Open, Interoperable Metaverse. In The 27th International Conference on 3D
Web Technology. ACM, Evry-Courcouronnes France, 1–7. https://doi.org/10.1145/
3564533.3564575

Russell M Taylor Ii, Thomas C Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano,
and Aron T Helser. 2001. VRPN: A Device-Independent, Network-Transparent VR
Peripheral System. In Proceedings of the ACM symposium on Virtual reality software
and technology. https://doi.org/10.1145/505008.505019

Jussi S. Jauhiainen. 2021. Entrepreneurship and Innovation Events during the COVID-
19 Pandemic: The User Preferences of VirBELA Virtual 3D Platform at the SHIFT
Event Organized in Finland. Sustainability 13, 7 (March 2021), 3802. https://doi.
org/10.3390/su13073802

Paulo Jesus, Carlos Baquero, and Paulo Almeida. 2006. ID Generation in Mobile
Environments. HASLab - Artigos em atas de conferências internacionais (2006), 1–4.
http://hdl.handle.net/1822/36065

Huib Kleinhout. 2021. WebRTC is now a W3C and IETF standard. https://web.dev/
webrtc-standard-announcement/

Boriana Koleva, Ian Taylor, Steve Benford, Mike Fraser, Chris Greenhalgh, Holger
Schnädelbach, Dirk Vom Lehn, Christian Heath, Ju Row-Farr, and Matt Adams.
2001. Orchestrating a mixed reality performance. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, Seattle Washington
USA, 38–45. https://doi.org/10.1145/365024.365033

Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. 2020. Browser
Fingerprinting: A Survey. ACM Transactions on the Web 14, 2 (May 2020), 1–33.
https://doi.org/10.1145/3386040

Marc Erich Latoschik, Christian Fröhlich, and AlexanderWendler. 2006. Scene Synchro-
nization in Close Coupled World Representations using SCIVE. The International
Journal of Virtual Reality 5, 3 (2006), 47–52.

Microsoft. 2022. Architecture overview — MRTK2. https://learn.microsoft.com/en-
us/windows/mixed-reality/mrtk-unity/mrtk2/architecture/overview

Mirror 2021. Mirror Networking. https://mirror-networking.com/
Mozilla Corporation. 2021. Mozilla Hubs. https://hubs.mozilla.com
Martin Naef, Edouard Lamboray, Oliver Staadt, and Markus Gross. 2003. The blue-c

distributed scene graph. In Proceedings of the 2003 IEEE Virtual Reality Conference.
IEEE Comput. Soc, 275–276. https://doi.org/10.1109/VR.2003.1191157 ISSN: 1087-
8270.

Nels Numan, Daniele Giunchi, Benjamin Congdon, and Anthony Steed. 2023. Ubiq-
Genie: Leveraging External Frameworks for Enhanced Social VR Experiences. In
2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Work-
shops (VRW). IEEE, Shanghai, China, 497–501. https://doi.org/10.1109/VRW58643.
2023.00108

Alexandra Papoutsaki, Patsorn Sangkloy, James Laskey, Nediyana Daskalova, Jeff
Huang, and JamesHays. 2016. WebGazer: ScalableWebcamEye TrackingUsingUser
Interactions. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI). AAAI, 3839–3845.

https://github.com/UCL-VR/ubiq/tree/samples-browserextended
https://doi.org/10.1007/978-3-540-27866-5_65
https://doi.org/10.1007/978-3-540-27866-5_65
https://doi.org/10.1007/978-981-99-0252-1_16
https://doi.org/10.1007/978-981-99-0252-1_16
https://blog.recroom.com/
https://blog.recroom.com/
https://doi.org/10.1109/VRAIS.1993.380753
https://doi.org/10.1162/1054746053890297
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/randomUUID
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/randomUUID
https://medium.com/alive-in-plasticland/lets-dive-into-the-under-presents-tempest-pt-1-2d1ef2168c5f
https://medium.com/alive-in-plasticland/lets-dive-into-the-under-presents-tempest-pt-1-2d1ef2168c5f
https://www.darkriftnetworking.com/
https://james.darpinian.com/blog/integer-math-in-javascript
https://james.darpinian.com/blog/integer-math-in-javascript
https://engagevr.io/
https://www.photonengine.com/
https://doi.org/10.1145/3489849.3489871
https://www.glue.work/
https://doi.org/10.3389/frvir.2020.561558
https://doi.org/10.1109/ICDCS.1995.499999
https://doi.org/10.1145/311535.311591
https://doi.org/10.1145/3564533.3564575
https://doi.org/10.1145/3564533.3564575
https://doi.org/10.1145/505008.505019
https://doi.org/10.3390/su13073802
https://doi.org/10.3390/su13073802
http://hdl.handle.net/1822/36065
https://web.dev/webrtc-standard-announcement/
https://web.dev/webrtc-standard-announcement/
https://doi.org/10.1145/365024.365033
https://doi.org/10.1145/3386040
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/architecture/overview
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/architecture/overview
https://mirror-networking.com/
https://hubs.mozilla.com
https://doi.org/10.1109/VR.2003.1191157
https://doi.org/10.1109/VRW58643.2023.00108
https://doi.org/10.1109/VRW58643.2023.00108


Extending the Open Source Social Virtual Reality Ecosystem to the Browser in Ubiq Web3D ’23, October 09–11, 2023, San Sebastian, Spain

David Saffo, Sara Di Bartolomeo, Caglar Yildirim, and Cody Dunne. 2021. Remote and
Collaborative Virtual Reality Experiments via Social VR Platforms. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. ACM, Yokohama
Japan, 1–15. https://doi.org/10.1145/3411764.3445426

Kimanthi Sammy. 2022. Play Roblox on Web Browser. https://alvarotrigo.com/blog/
roblox-web-browser

Ryan Schulz. 2020. Comprehensive List of Social VR Platforms and Virtual Worlds.
https://ryanschultz.com/list-of-social-vr-virtual-worlds/

Sandeep Singhal and Michael Zyda. 1999. Networked virtual environments: design and
implementation. Addison-Wesley, Reading, MA.

M. Slater, J. Howell, A. Steed, D-P. Pertaub, and M. Garau. 2000. Acting in virtual
reality. In Proceedings of the third international conference on Collaborative virtual
environments. ACM, San Francisco California USA, 103–110. https://doi.org/10.
1145/351006.351020

SocketIO. 2023. SocketIO. https://socket.io/docs/v4/how-it-works/
Spatial. 2023. Spatial.io. https://spatial.io/

Stanford Artificial Intelligence Laboratory et al. 2018. Robotic Operating System. https:
//www.ros.org

Steel Crate Games. 2023. The Co-Op Bomb Defusing Party Game. https:
//keeptalkinggame.com/

Unity Technologies. 2021. MLAPI - Unity Multiplayer Networking. https://docs-
multiplayer.unity3d.com/

Virbela. 2022. Campus Roles. https://support.virbela.com/s/article/Campus-Roles
Antony Vitillo. 2021. Behind the scenes of the VR concert Welcome To The Other Side.

https://skarredghost.com/2021/01/05/jean-michel-jarre-vr-concert-postmortem/
W3C. 2023a. Simple Object Access Protocol. https://www.w3.org/TR/soap/
W3C. 2023b. W3C Security Activity. https://www.w3.org/Security/
Matthias Wolfel, Daniel Hepperle, Christian Felix Purps, Jonas Deuchler, and Wladimir

Hettmann. 2021. Entering a new Dimension in Virtual Reality Research: An
Overview of Existing Toolkits, their Features and Challenges. In 2021 Interna-
tional Conference on Cyberworlds (CW). IEEE, Caen, France, 180–187. https:
//doi.org/10.1109/CW52790.2021.00038

https://doi.org/10.1145/3411764.3445426
https://alvarotrigo.com/blog/roblox-web-browser
https://alvarotrigo.com/blog/roblox-web-browser
https://ryanschultz.com/list-of-social-vr-virtual-worlds/
https://doi.org/10.1145/351006.351020
https://doi.org/10.1145/351006.351020
https://socket.io/docs/v4/how-it-works/
https://spatial.io/
https://www.ros.org
https://www.ros.org
https://keeptalkinggame.com/
https://keeptalkinggame.com/
https://docs-multiplayer.unity3d.com/
https://docs-multiplayer.unity3d.com/
https://support.virbela.com/s/article/Campus-Roles
https://skarredghost.com/2021/01/05/jean-michel-jarre-vr-concert-postmortem/
https://www.w3.org/TR/soap/
https://www.w3.org/Security/
https://doi.org/10.1109/CW52790.2021.00038
https://doi.org/10.1109/CW52790.2021.00038

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Commercial Systems & Use Cases
	2.2 Toolkits
	2.3 Standards
	2.4 Summary

	3 Motivation & Methodology
	4 Ubiq
	4.1 Messaging
	4.2 Addressing
	4.3 Server and Rooms
	4.4 Cross Platform Use

	5 Browser Peer
	5.1 Architecture
	5.2 Protocol
	5.3 Object Graph
	5.4 Ids & Hashing
	5.5 Design-Time Ids
	5.6 Audio Communication

	6 Use Cases and Examples
	6.1 Wizard-of-Oz Control Panels
	6.2 Streaming Immersive Views
	6.3 User Interfaces
	6.4 Diagnostics and Projections
	6.5 Bluetooth Interaction
	6.6 Eye Tracking

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

