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ABSTRACT

Head-mounted displays (HMDs) are an essential display device
for the observation of virtual reality (VR) environments. However,
HMDs obstruct external capturing methods from recording the user’s
upper face. This severely impacts social VR applications, such as
teleconferencing, which commonly rely on external RGB-D sensors
to capture a volumetric representation of the user. In this paper, we
introduce an HMD removal framework based on generative adversar-
ial networks (GANs), capable of jointly filling in missing color and
depth data in RGB-D face images. Our framework includes an RGB-
based identity loss function for identity preservation and several
components aimed at surface reproduction. Our results demonstrate
that our framework is able to remove HMDs from synthetic RGB-D
face images while preserving the subject’s identity.

Index Terms: Computing methodologies—Artificial intelligence—
Computer vision—Reconstruction; Human-centered computing—
Human computer interaction (HCI)—Interaction paradigms—
Virtual reality

1 INTRODUCTION

Virtual reality (VR) enables users to explore immersive virtual envi-
ronments (IVEs) with a head-mounted display (HMD), which render
a virtual world based on their physical movement. The natural inter-
face this technology offers has enabled a wide range of simulations,
which are too complex, hazardous or costly for execution in the real
world. Groups of individuals are commonly brought together in a
single IVE to create social VR experiences, such as collaborative
learning [35,41], treatment of mental disorders [10,26], and telecon-
ferencing [4, 11, 40]. These experiences are primarily driven by the
quality of interpersonal interaction in VR, which is fundamentally
impacted by the visual quality of human representations as high-
lighted by a large body of literature [2, 18, 27]. There are several
approaches to represent humans in IVEs. Some solutions are based
on advanced computer generated imagery (CGI), including cartoon-
like avatars such as in AltspaceVR1 and photorealistic avatars [52],
which mimic the movement of the user. Other approaches are rooted
in the videoconferencing world, aimed at volumetric telepresence.
This paper focuses on such methods, where users are captured in
real-time using RGB-D sensors, who are reconstructed as volumetric
video (point clouds) and rendered in the virtual world with other
users [11, 25, 30, 32].

While HMDs are an essential display device for VR, they obstruct
external capturing methods from recording the user’s upper face,
severely impacting the social aspects of VR applications. In this
work, we propose an image-based method for the virtual removal of
HMDs, which coherently fills in the occluded color and geometric
information of a subject’s face represented in RGB-D images. This
task is referred to as HMD removal.

*e-mail: nels.numan@gmail.com
†e-mail: frank.terhaar@tno.nl
‡e-mail: p.s.cesar@cwi.nl

1https://altvr.com

��D��RGB�D

Ω

�RGB

Ω

Figure 1: Illustration of our target problem. RGB-D input image I
contains a face and masked region Ω. We aim to virtually remove
the HMD by filling in the missing color (RGB) and geometric (D)
information of image region Ω, seamlessly connecting it with the
image region I−Ω. GT denotes the ground truth image.

In general, there are two types of approaches to HMD removal:
model-based methods and image-based methods. Model-based meth-
ods [13, 28, 37, 47, 58] provide realistic results by representing the
user with a 3D face model, which is transformed during online us-
age based on sensor data. However, methods of this kind require
an offline capture and calibration process. In contrast, image-based
methods [49, 57] attempt to synthesize the facial region through
image inpainting, which involves resolving occluded pixels of an
image in a realistic way. However, existing approaches consider
only RGB images, which do not offer the necessary geometric data
to accurately represent the user in an IVE.

To address this, we introduce an image-based HMD removal
framework that is capable of the removal of HMDs in RGB-D im-
ages. To solve this problem (Fig. 1), we build on recent advance-
ments in the field of image inpainting involving the application of
generative adversarial networks (GANs). The main contributions of
this work are as follows. We propose a GAN-based framework that
is capable of inpainting both the color and depth information present
in RGB-D face images, which includes an RGB-based identity loss
function for identity preservation. In order to train and evaluate
our framework, we define a synthesization pipeline for the creation
of a large-scale RGB-D face image dataset based on Basel Face
Model (BFM) 2017 [16] with random pose, ambient illumination,
and expression.

2 RELATED WORK

2.1 Head-Mounted Display (HMD) Removal

HMD removal describes the recovery of missing image information
caused by the occlusion of an HMD in a coherent and realistic way.
Model-based methods [13, 28, 37, 47, 58] use a face model to repre-
sent the user’s facial geometry and expressions, which typically is
recorded or designed prior to online usage. At runtime, coefficients
are inferred from sensor data, which in turn are used to transform
the face model. These methods provide realistic results with low
bandwidth requirements, but often require custom hardware and
calibration processes. Image-based approaches [49, 57] generally
do not use an intermediate model to virtually remove the HMD, but
rely on operations in the image space to resolve the occluded area.
Consequently, methods of this kind form a subtask of face comple-
tion or image inpainting. Zhao et al. [57] proposed a GAN-based
framework to virtually remove synthetically placed HMDs from
RGB images. This procedure is robust against moderate variations
in pose and is able to preserve identity given a reference image of
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the target subject. However, this approach relies on a pose map that
represents the subject’s head pose and only considers RGB images,
which limits its applications within VR. We address this limitation by
proposing a framework that is capable of handling RGB-D images.

2.2 Image Inpainting
In general, image-based HMD removal approaches are driven by
research from the field of image inpainting, which describes the
task of filling missing image regions with realistic content. Recent
works [24,39,53–55] have adopted the concept of GANs [17], which
learn a representative estimate of the distribution of the given training
data. Various methods demonstrate to perform well on face images,
but often do not preserve the subject’s identity and only consider
RGB color images.

Several approaches for depth image inpainting exist that utilize
corresponding RGB data as context for the inference of missing
depth information [1, 22, 44, 56]. Other works train models that
attempt to minimize the difference between the surface normals of
the completed depth image and its ground truth [34,56]. To improve
reproduction of surfaces formed by the depth image, we utilize
surface normal images and employ several components proposed by
Matias et al. [34].

There is limited research on RGB-D image inpainting [12, 14, 15,
36, 48], which is likely due to the fact that RGB-D images contain
multimodal information. While the RGB values represent the color
of the captured object, the D values represent the distance between
the object and the sensor. Therefore, each modality has its own
statistical properties, which complicates feature construction. Fujii
et al. [14, 15] introduced the first generative approach to RGB-D
image inpainting, fusing color and depth features at feature-level.
However, the method does not consider large non-rectangular masks,
RGB-D face images, or identity preservation.

3 APPROACH

We adopt the two-stage RGB image inpainting method proposed
by Yu et al. [55] as our base architecture. Our decision is based on
its state-of-the-art performance and its architectural characteristics.
Firstly, this framework uses gated convolution, allowing masks to
have any size and to appear anywhere in the input image. Further-
more, it employs the SN-PatchGAN discriminator, which is able to
focus on different locations and semantics across image channels.
This is particularly relevant for capturing different types of semantics
represented in the multimodal images that we aim to inpaint.

Our network architecture, shown in Fig. 2, follows the structure of
the base architecture [55] and consists of a coarse-to-fine generator
G and discriminator D, which are trained through an adversarial
process. Throughout this process, the objective of G is to accurately
inpaint a given image, whereas the objective of D is to determine
whether the inpainted image is real or not.

3.1 Generator
The coarse-to-fine generator G inpaints the RGB-D image in two
stages. The first stage produces a coarse prediction of the masked
image region. Subsequently, this prediction is fed to the second
stage where it is further refined. G takes an occluded RGB-D image
I, a binary mask Ω, and an RGB reference image Iref as its input.

Fusion of color and depth information All image channels
are passed to the generator in concatenative fashion. Consequently,
both the color channels (RGB) as well as the depth channel (D) of
the RGB-D input image are processed simultaneously without any
form of feature-level fusion. This naive fusion strategy is generally
referred to as data-level fusion. We have explored and developed
several feature-level fusion methods in the coarse stage of the gen-
erator, such as fusion through feature summation [20] and residual
feature fusion [14, 38]. However, we have not found concrete evi-
dence to prove the benefit of such feature-level fusion strategies over

data-level fusion within the context of this work. Therefore, at the
input of both stages of G, we employ data-level fusion.

Contextual surface attention (CSA) module The refinement
stage of generator G contains a contextual attention (CA) module,
enabling propagation of information originating from any spatial
location in the image. Without any modification to the CA module
of the base framework [55], it considers absolute depth values in
its matching procedure. To enable the generator to interpret the
geometric surfaces formed by these values, we adopt the contextual
surface attention (CSA) module introduced by Matias et al. [34].
This module relies on a surface normal image, created through the
estimation of the normal vectors of each pixel through the analysis
of neighborhood depth values. This operation takes place based on
the coarse prediction, of which the result is passed to the CA branch
of the refinement stage.

3.2 Discriminator
Throughout the model training process, discriminator D learns to
distinguish inpainted images from ground truth images. D takes an
occluded RGB-D image I and a binary mask Ω as its input.

We employ the SN-PatchGAN discriminator of the base frame-
work, which independently classifies each patch of the input image
to be real or fake through convolution. These classification responses
are averaged to form the value of SN-PatchGAN loss LGAN.

3.3 Loss Functions
Our objective function comprises four loss functions, whose value is
minimized during training. Firstly, we employ the two loss functions
of the base framework, LGAN and `1 reconstruction loss. As previ-
ously described, LGAN focuses on the channel-wise reproduction of
the image information in image patches at different spatial locations,
whereas the `1 loss supervises pixel-wise reconstruction. In addi-
tion, we employ our identity loss LID and vectorial loss Lvec [34],
described below.

Identity loss An image of a human face contains vast informa-
tion, cognitively distinct to a person’s identity [7]. As identity has a
profound impact in face-to-face communication [46], its preserva-
tion is essential in the context of our framework.

We address this with the identity loss function LID, that super-
vises the model in the identity-preserving reconstruction of faces
represented in RGB-D images. Similar to other perceptual loss func-
tions for identity preservation [23,29,31,45,57], we use a pretrained
face recognition model. Specifically, we employ a ResNet50 [21]
model trained on the VGGFace2 dataset [8]. Moreover, we require
an RGB reference face image to be included in the input of the
generator, as indicated in Fig. 2. Notably, we do not require the
reference image to contain a depth channel. This is due by the fact
that highly accurate pretrained RGB-D face recognition models are
currently not available. Consequently, the preservation of identity is
completely dependent on the color information represented in the
inpainted and reference images.

During model training, an identity embedding of the RGB refer-
ence image xref and the inpainted RGB image xpred is computed by
passing them through pretrained face recognition model M, of which
we take the activation values of the last convolutional layer. We then
calculate the mean squared error (MSE) between the two identity
embeddings which forms the value of identity loss LID, which is
defined as:

LID(xpred,xref) = MSE(M(xpred)−M(xref)) (1)

Vectorial loss We are faced with a challenge consisting of
the joint completion of two spatially-aligned images of differing
modalities, an RGB image and a depth image. Notably, the depth
image contains pixel values that represent the distance from the face
to the RGB-D sensor, which collectively form a surface. Yet, the
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Figure 2: Overview of our RGB-D image inpainting architecture with data-level fusion, contextual surface attention (CSA), and the required
inputs for the identity loss LID, vectorial loss Lvec, and SN-PatchGAN loss LGAN. c and + denote concatenation and addition respectively.
This figure is adapted from the work of Yu et al. [55].

base architecture does not include a mechanism to interpret the depth
values as a surface.

To address this, we employ a loss function that encourages the
reproduction of surfaces contained in the depth channel. This loss
function is based on surface normal estimation and was introduced
as the vectorial loss function by Matias et al. [34].

During training, the surface normal image of the inpainted image
and the corresponding ground truth image are computed. To obtain
vectorial loss Lvec, we calculate the `1 distance between these two
images. In this way, for each pixel, the error between the ground
truth normal vector and the normal vector as inpainted contributes
to the value of vectorial loss Lvec.

4 EXPERIMENTAL RESULTS

We evaluate our framework through two types of experiments.
Firstly, we perform a qualitative evaluation through a visual ex-
amination of the results. Secondly, we define a set of objective
metrics to quantitatively evaluate the results.

Since there currently is no RGB-D face completion method that
we can directly compare our framework to, separately trained RGB
image and depth image inpainting models of the base framework [55]
form a comparative baseline. These models are trained with the CA
module and an objective function comprised of the `1 loss and
LGAN. The results of these unimodal models demonstrate the level
of visual quality we aim to match with our multimodal RGB-D
image inpainting models.

Furthermore, we evaluate our framework by comparing the perfor-
mance of models trained with different sets of components. Specifi-
cally, with each model, we add one of the components to the frame-
work to evaluate their impact. Therefore, our evaluation covers
models trained with the following configurations: 1) `1 + LGAN,
2) `1 + LGAN + LID, 3) `1 + LGAN + LID + Lvec, and 4) `1 +
LGAN + LID + Lvec with CSA.

4.1 Data Generation

Unlike the wide availability of large RGB face image datasets [8,
19], similarly sized datasets containing RGB-D face images are not
available at this time. Due to the dataset size requirements of the
training procedure of GANs, we opted to create a synthetic dataset
with a high degree of realism and variety.

To facilitate this process, we built a data synthesization pipeline to
create a synthetic dataset of RGB-D images of faces based on BFM
2017 [16], a parametric 3D Morphable Model (3DMM) [5] learned
from 3D scans of human faces. While the usage of this synthetic
dataset reduces the potential of generalization to real-world data, it
does provide exact controls over facial expression, pose, and ambient
illumination.

Our pipeline starts by taking a random sample across the indepen-
dent shape, texture, and expression parameters of the BFM 2017 [16]
model. Following this, relative to the resulting mesh, we place a
predefined mesh of an HMD representing the true dimensions of an
Oculus Rift. Next, the compound mesh is placed in world space, at
distance d from the camera position, which we sensibly set to 85
centimeters. Finally, a simple ray tracing algorithm is responsible for
rendering the color image as well as a corresponding depth image.
Effectively, we render three images of 224× 224 pixels in size: a
color image of the face without the HMD, depth image of the face
without the HMD, and binary image of solely the HMD.

We jointly encode the color image and depth image of the face
in the four channels of a single 8-bit PNG file. We opt for a depth
resolution of 1 mm per pixel for two reasons. Firstly, the approx-
imate resolution of the Microsoft Kinect is 1.3mm per pixel [33],
one of the most widely-used commodity RGB-D sensors currently
available. Secondly, this choice allows us to encode the depth im-
age in the alpha channel of the 8-bit PNG file. We achieve this
by subtracting the scalar d from the inverted depth image, which
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Figure 3: Examples of individual transformations, from left to right:
original (frontal view with full ambient illumination), random pose,
random ambient illumination, and random expression.

enables the depth values to fit in the 8-bit alpha channel. This is
due to the fact that faces will never realistically have a depth that
exceeds 256 millimeters. We have made the implementation of the
RGB-D rendering segment of this pipeline publicly available as
mesh2rgbd2, which is based on face3d3 by Y. Feng. The resulting
dataset consists of 48000 RGB-D face images with the following
properties and transformations: 1) random expression, 2) random
pose p: with ppitch and pyaw in range [−30°,30°] and proll in range
[−20°,20°], 3) random ambient illumination a: with aintensity in
range [80,110]. We split this dataset into sets of sizes: 40000, 4000,
4000, for training, validation, and testing, respectively. Examples of
our dataset are shown in Fig. 3.

4.2 Implementation Details and Setup

We implemented our framework in TensorFlow v1.15, based on the
source code by Yu et al. [55]. Training of our models was performed
on two NVIDIA GeForce RTX 2080 Ti GPUs. This process typically
takes approximately 2.5 days, but is continued until convergence of
the losses and stabilization of the visual quality of the validation re-
sults. We trained and evaluated our models with the aforementioned
dataset containing images of 224×224 pixels. For training, we use
a learning rate of 0.0001 for both the generator and discriminator
and a batch size of 10. Moreover, through hyperparameter tuning
based on a combination of visual examination and objective metrics,
we determined the default hyperparameter balance of 3:1:1:1, for
the `1 reconstruction loss, SN-PatchGAN loss LGAN, identity loss
LID, and vectorial loss Lvec respectively. We have made the source
code of our framework publicly available4.

At inference with a single NVIDIA GeForce RTX 2080 Ti, our
framework achieves an average frame rate of 48 frames per second.
While our method currently does not leverage any temporal modality
and further research is needed, the performance of our framework
theoretically permits real-time RGB-D video inpainting.

4.3 Qualitative Results

Whereas color images can be presented straightforwardly, RGB-D
images require additional representations to visualize the geometric
characteristics contained in the depth channel. Therefore, we provide
three representations for each inpainted RGB-D image: an RGB
color image, depth image, and estimated surface normal image.
The estimated surface normal image is calculated based on the
depth image using the method outlined by Matias et al. [34]. The
qualitative results of the specified model configurations are shown
in Fig. 4a.

Furthermore, Fig. 5 presents two examples where the model
receives a incomplete image of one identity and a reference image
of another. The model used for this experiment was trained with an
objective function including the identity loss LID.

2https://github.com/nsalminen/mesh2rgbd
3https://github.com/YadiraF/face3d
4https://github.com/nsalminen/HMDRemoval

4.4 Quantitative Results
The quantitative evaluation of generative models remains challeng-
ing, as consensus has not been reached with respect to a standardized
set of objective metrics [6]. Despite this, they do provide us with an
empirical base to compare the defined model configurations.

We define our objective metrics to align with the evaluation of
existing image inpainting methods, to agree with human perceptual
judgement, and to reflect the inherent challenges of HMD removal
in RGB-D images. Based on these considerations we report the
following metrics: 1) mean `1 error, 2) mean `2 error, 3) Peak
Signal-to-Noise Ratio (PSNR), 4) Structural Similarity (SSIM) index
[51], 5) Visual Information Fidelity (VIF) index [43]. Notably,
there is evidence to suggest that the VIF index of depth images is
correlated with the quality of experience of 3D video compared to
other quality metrics [3]. Therefore, this is an insightful addition to
our set of evaluation metrics.

In addition, we define a metric to quantify and compare the degree
of identity preservation. This metric uses the FaceNet [42] model
N, pretrained on the MS-Celeb-1M [19] dataset which produces a
128-byte vector representing the subject’s identity. Similar to the
identity loss, the identity error is calculated based on only the RGB
channels. To obtain the identity error, we calculate the Euclidean
distance between the identity vector of the ground truth image x and
inpainted image x̂ respectively. Accordingly, the identity error is
calculated as follows:

ID(x, x̂) = ||N(x)−N(x̂)||2 (2)

We present the quantitative results of each model configuration
in Fig. 4b.

5 ANALYSIS AND DISCUSSION

In this paper, we set out to jointly inpaint color and depth information
in occluded RGB-D face images. As image inpainting approaches
typically handle unimodal data, it is of interest to compare the re-
sults of the unimodal models ( A ) and the simplest version of our
multimodal model ( B ). In both Fig. 4a and Fig. 4b, we observe a no-
table deterioration of the results of the multimodal inpainting model
compared to the results of the unimodal inpainting models. Both
the resulting color and depth images contain a significant amount
of noise and artifacts. This suggests that the feature construction
process in the multimodal inpainting model is unable to jointly cap-
ture the information in the color and depth channels, worsening its
predictive capabilities.

Nonetheless, considering the difficulty of multimodal feature
construction, the results of the multimodal model ( B ) are of notable
quality and demonstrate the viability of data-level fusion approaches
to RGB-D image inpainting. A natural progression of this work
would be to further explore the application of feature-level fusion
methods and depth-aware convolution [9, 50] to image inpainting.
Moreover, future research might explore how our method compares
to the recently introduced RGB-D image inpainting method by Fujii
et al. [15].

5.1 Identity Preservation
We now discuss the effect of our identity loss LID, which stimulates
the preservation of identifying facial features. In Fig. 4a, we observe
that the model trained with our identity loss ( C ) produces identity
features that are consistent with the provided reference image. This
effect is reflected empirically in Fig. 4b, where we see improved
results across all metrics. Moreover, we observe an improved sym-
metry of facial features in Fig. 4a. However, this does not extend to
eye color, as we regularly observe differing eye colors in a single
inpainted image. A possible cause is that an incorrect eye color has
a minor impact on the loss values considering the relatively small
image region it comprises.
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(a) Comparative qualitative results, shown for color (RGB), depth (D), and estimated surface normals (SN). For visualization, D is normalized to [0, 1] and displayed with the inferno
colormap from the matplotlib package. The normal vectors (x, y, z) for each pixel in SN are estimated based on D and are visualized with RGB values.

`1 error `2 error PSNR SSIM VIF ID

Method RGB D SN RGB D SN RGB D SN RGB D SN RGB D SN RGB

A Unimodal models [55] 11.333 4.346 20.991 27.500 17.666 37.086 18.839 23.519 16.832 0.913 0.972 0.884 0.488 0.660 0.490 11.780

B `1 + LGAN 11.813 5.109 26.949 28.318 18.716 45.523 18.587 23.049 15.025 0.915 0.968 0.858 0.490 0.640 0.453 12.157
C `1 + LGAN + LID 8.155 3.765 23.928 21.867 15.315 40.202 20.810 24.662 16.101 0.936 0.975 0.867 0.528 0.664 0.465 7.965

D `1 + LGAN + LID + Lvec 8.515 3.500 19.355 22.161 14.979 33.925 20.686 24.836 17.615 0.933 0.976 0.893 0.524 0.670 0.495 7.851
E `1 + LGAN + LID + Lvec

with CSA
8.363 3.612 19.087 21.770 14.927 33.464 20.875 24.890 17.719 0.934 0.976 0.893 0.527 0.675 0.495 7.891

(b) Comparative quantitative results, shown for color (RGB), depth (D), and estimated surface normals (SN). We report the following metrics: mean `1 error (lower is better), mean `2

error (lower is better), Peak Signal-to-Noise Ratio (PSNR) (higher is better), Structural Similarity (SSIM) index [51] (higher is better), Visual Information Fidelity (VIF) index [43]
(higher is better).

Figure 4: Results of models with different configurations. A shows results originating from two distinct models, each trained to inpaint either
color or depth images. B - E show models with different configurations, where loss functions and components are added to demonstrate their
impact on the visual results.
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* Depth images are not passed as input to the model and are only shown for comparison purposes.

Figure 5: Results of model input containing differing identities,
generated by a model trained with our identity loss function LID.
Results are shown for color (RGB) and depth (D).

Perhaps the most insightful demonstration of the effects of the
identity loss function is performed by feeding the model with a
masked image of one identity and a reference image of another, as
shown in Fig. 5. The inpainted results show faces that are globally
consistent with the known region of the image, while also containing
distinct facial features from the given reference image. Interestingly,
while the identity loss is calculated based on the RGB channels, the
depth channel of the inpainted images show similar facial features to
the given reference image. This indicates that the model learns the
relation between the identity loss and depth image indirectly, based
on the feedback it receives regarding the inpainted RGB channels.
This effect is visible in both Fig. 4a and Fig. 5.

5.2 Reproduction of Geometric Surfaces
Our framework contains a loss function and module that are focused
on the improvement of surface reproduction. The qualitative and
quantitative results of the model trained with the vectorial loss func-
tion Lvec ( D ) appear to be in agreement, as a clear improvement of
the smoothness of the inpainted depth image and its surface normal
representation can be identified in both Fig. 4a and Fig. 4b. This
is similar to the findings of Matias et al. [34], who proposed this
function for depth image inpainting. However, this comes at a minor
cost as seen in Fig. 4b, which shows decreased quality of inpainted
RGB channels ( D ). Furthermore, we note an inconsistent connec-
tion between the inpainted and known region of the image in some
cases. A likely explanation is that an inconsistent connection at the
boundary of the inpainted region has a limited impact on the value

of the vectorial loss function.
In terms of the CSA module [34], we found no evident effect

to indicate improvement of the visual quality of the results of this
model ( E ) in Fig. 4a. However, the quantitative results of the
model with the CSA module presented in Fig. 4b show improved
results across nearly all metrics. The most likely cause of this overall
improvement is the addition of the estimated surface normal image to
the CA branch of the network, which enhances the feature matching
process of the CA module.

5.3 Real-world Data and Applications
GANs aim to learn complex distributions in order to generate sam-
ples with a broad diversity and level of detail. In our search for a
suitable RGB-D face dataset, we concluded that a sufficiently sized
dataset for training a GAN is not currently available. Our choice
to train and evaluate our framework with a synthetic dataset came
with several benefits, including the ease of dataset creation and full
control over identity and recording conditions.

However, this decision also has some serious drawbacks. Firstly,
BFM 2017 [16] is based on a total of 200 facial shape and texture
captures. While this has no direct consequence to the number of
identities we can sample from the model, it does limit the size of
its parameter space, which affects the sample diversity. This has a
significant impact on the bias and generalizability of our framework.
Secondly, our synthetic dataset contains perfect RGB-D images,
without noise, misalignment, or artifacts, frequently found in real-
world RGB-D recordings. This being so, our trained models are not
robust with respect to these types of data characteristics, as it has not
been made familiar with them during training. This not only affects
the applicability of our framework to real-world data, but also forms
a problem for its evaluation, as we cannot ensure that the explored
components would behave similarly on real-world data.

That being said, our synthetic dataset forms a substantial base for
the exploration of joint RGB-D image inpainting. Our findings have
important implications for models trained on RGB-D data and we
hypothesize that our models can be fine-tuned through training on
a real-world dataset. Additional research is needed to investigate
socially evocative factors such as the reproduction of eye gaze and
expression, which several model-based methods have previously
explored [13, 28, 37, 47, 58].

6 CONCLUSION

HMD removal is a challenging task which has emerged with the
increasing usage of IVEs for social VR applications [4, 10, 11, 26,
35, 40, 41]. In this paper, we proposed a framework that is capable
of the virtual removal of HMDs in RGB-D images. We formulated
this problem as a joint RGB-D image inpainting task and proposed
a framework that is capable of simultaneously filling in the missing
color and depth information of face images occluded by an HMD. To
preserve the identity features of the inpainted faces, we proposed an
RGB-based identity loss function. Moreover, to improve surface re-
production in the depth channel, we employed the vectorial loss and
CSA module proposed by Matias et al. [34]. In absence of a large-
scale RGB-D face dataset, we devised a pipeline to create a synthetic
RGB-D face dataset. Based on this dataset, we performed qualita-
tive and quantitative experiments to demonstrate the performance
of each component and showed our framework’s robustness against
expression, pose, and ambient illumination. Despite its exploratory
nature and limitations, our research offers unique insights into the
design and behavior of a multimodal image inpainting framework
that can be of interest to future research.
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[26] E. Klinger, S. Bouchard, P. Légeron, S. Roy, F. Lauer, I. Chemin, and
P. Nugues. Virtual reality therapy versus cognitive behavior therapy
for social phobia: A preliminary controlled study. Cyberpsychology &
behavior, 8(1):76–88, 2005. doi: 10.1089/cpb.2005.8.76

[27] M. E. Latoschik, D. Roth, D. Gall, J. Achenbach, T. Waltemate, and
M. Botsch. The effect of avatar realism in immersive social virtual
realities. In Proceedings of the 23rd ACM Symposium on Virtual Reality
Software and Technology, pp. 1–10, 2017. doi: 10.1145/3139131.
3139156

[28] H. Li, L. Trutoiu, K. Olszewski, L. Wei, T. Trutna, P.-L. Hsieh,
A. Nicholls, and C. Ma. Facial performance sensing head-mounted
display. ACM Transactions on Graphics (ToG), 34(4):47, 2015. doi:
10.1145/2766939

[29] M. Li, W. Zuo, and D. Zhang. Deep identity-aware transfer of facial
attributes. arXiv preprint arXiv:1610.05586, 2016.

[30] S. Lin, Y. Chen, Y.-K. Lai, R. R. Martin, and Z.-Q. Cheng. Fast capture
of textured full-body avatar with rgb-d cameras. The Visual Computer,
32(6-8):681–691, 2016.

[31] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer
Vision (ICCV), December 2015. doi: 10.1109/iccv.2015.425

[32] Z. Liu, H. Qin, S. Bu, M. Yan, J. Huang, X. Tang, and J. Han. 3d
real human reconstruction via multiple low-cost depth cameras. Signal
Processing, 112:162–179, 2015.

[33] Q. Luo and G. Yang. Research and simulation on virtual movement
based on kinect. In International Conference on Virtual, Augmented
and Mixed Reality, pp. 85–92. Springer, 2014. doi: 10.1007/978-3-319
-07458-0 9

[34] L. P. Matias, M. Sons, J. R. Souza, D. F. Wolf, and C. Stiller. Veigan:
Vectorial inpainting generative adversarial network for depth maps
object removal. In 2019 IEEE Intelligent Vehicles Symposium (IV), pp.
310–316. IEEE, 2019. doi: 10.1109/ivs.2019.8814157

[35] T. Monahan, G. McArdle, and M. Bertolotto. Virtual reality for collab-
orative e-learning. Computers & Education, 50(4):1339–1353, 2008.
doi: 10.1016/j.compedu.2006.12.008

[36] S. Mori, J. Herling, W. Broll, N. Kawai, H. Saito, D. Schmalstieg, and
D. Kalkofen. 3d pixmix: Image inpainting in 3d environments. In

7



©2021 IEEE. This is the author’s version of the article that will be published in the proceedings of the IEEE VR 2021 conference.

2018 IEEE International Symposium on Mixed and Augmented Reality
Adjunct (ISMAR-Adjunct), pp. 1–2. IEEE, 2018. doi: 10.1109/ismar
-adjunct.2018.00020

[37] K. Olszewski, J. J. Lim, S. Saito, and H. Li. High-fidelity facial and
speech animation for vr hmds. ACM Transactions on Graphics (TOG),
35(6):1–14, 2016. doi: 10.1145/2980179.2980252

[38] S.-J. Park, K.-S. Hong, and S. Lee. Rdfnet: Rgb-d multi-level residual
feature fusion for indoor semantic segmentation. In Proceedings of the
IEEE International Conference on Computer Vision, pp. 4980–4989,
2017. doi: 10.1109/iccv.2017.533

[39] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros.
Context encoders: Feature learning by inpainting. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp.
2536–2544, 2016. doi: 10.1109/cvpr.2016.278

[40] M. J. Prins, S. N. Gunkel, H. M. Stokking, and O. A. Niamut. To-
gethervr: A framework for photorealistic shared media experiences in
360-degree vr. SMPTE Motion Imaging Journal, 127(7):39–44, 2018.
doi: 10.5594/jmi.2018.2840618

[41] D. J. Roberts, A. S. Garcia, J. Dodiya, R. Wolff, A. J. Fairchild, and
T. Fernando. Collaborative telepresence workspaces for space operation
and science. In 2015 IEEE Virtual Reality (VR), pp. 275–276. IEEE,
2015. doi: 10.1109/vr.2015.7223402

[42] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embed-
ding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 815–823,
2015. doi: 10.1109/cvpr.2015.7298682

[43] H. R. Sheikh and A. C. Bovik. Image information and visual quality.
IEEE Transactions on image processing, 15(2):430–444, 2006. doi: 10.
1109/tip.2005.859378

[44] J. Shen and S.-C. S. Cheung. Layer depth denoising and completion for
structured-light rgb-d cameras. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1187–1194, 2013. doi:
10.1109/cvpr.2013.157

[45] Y. Shen, B. Zhou, P. Luo, and X. Tang. Facefeat-gan: A two-
stage approach for identity-preserving face synthesis. arXiv preprint
arXiv:1812.01288, 2018.

[46] T. L. Taylor. Living digitally: Embodiment in virtual worlds. In The
social life of avatars, pp. 40–62. Springer, 2002. doi: 10.1007/978-1
-4471-0277-9 3
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