
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or redis-
tribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1



To appear in the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshop (VRW) proceedings.

Ubiq-Genie: Leveraging External Frameworks for Enhanced
Social VR Experiences

Nels Numan* Daniele Giunchi† Benjamin Congdon‡ Anthony Steed§

University College London

Figure 1: Overview of the two prototypes of collaborative applications presented in this paper that are based on Ubiq-Genie. Left: a
voice-controlled texture generation method based on the diffusion-based image synthesis model Stable Diffusion 2.0 [21]. Right: a
voice-controlled conversational agent based on the text synthesis tool ChatGPT [19].

ABSTRACT

This paper describes the Ubiq-Genie framework for integrating ex-
ternal frameworks with the Ubiq social VR platform. The proposed
architecture is modular, allowing for easy integration of services
and providing mechanisms to offload computationally intensive pro-
cesses to a server. To showcase the capabilities of the framework,
we present two prototype applications: 1) a voice- and gesture-
controlled texture generation method based on Stable Diffusion 2.0
and 2) an embodied conversational agent based on ChatGPT. This
work aims to demonstrate the potential of integrating external frame-
works into social VR for the creation of new types of collaborative
experiences.

Keywords: social virtual reality, collaboration, open source, system
architecture, generative artificial intelligence

Index Terms: Human-centered computing—Collaborative and
social computing systems and tools;

1 INTRODUCTION

The proliferation of open-source projects in recent years has greatly
impacted various fields, including machine learning and computer
vision [6]. These projects have grown significantly due to advance-
ments in technology and the availability of data. Many of these
frameworks can serve a purpose within virtual reality (VR) expe-
riences. For example, recent advances in machine learning might
provide the ability to generate textual, auditory, or visual data within
collaborative virtual environments (CVEs) for creative applications.
Additionally, open-source visualisation techniques and machine
learning algorithms might be utilised to analyse and interpret user
behaviour, aiding in the evaluation of VR applications.

In this paper, we describe Ubiq-Genie, a system that enables
the integration of external (open source) frameworks with the Ubiq

*e-mail: nels.numan@ucl.ac.uk
†e-mail: dgiunchi@ucl.ac.uk
‡e-mail: ben.congdon.11@ucl.ac.uk
§e-mail: asteed@ucl.ac.uk

social VR platform [4]. This platform is uniquely positioned for
integration with other frameworks due to its open and flexible design
on both the server and client sides. To demonstrate the potential use
cases and applications enabled by the proposed system, we present
two prototype applications built with generative artificial intelli-
gence (AI) frameworks that rely on server-side processing through
Ubiq-Genie (Figure 1). Specifically, (1) a voice-controlled texture
generation method based on speech-to-text and the diffusion-based
image synthesis model Stable Diffusion 2.0 [21]; and (2) a voice-
controlled conversational agent based on speech-to-text, the text
synthesis model ChatGPT [19], and text-to-speech. Our prototypes
are primarily implemented with the Python programming language,
which is currently one of the most common languages for open-
source data science, machine learning, and computer vision projects.
However, the techniques described in this paper are also applicable
to frameworks written in most other programming languages.

In this paper, we introduce techniques to incorporate a wide range
of services into CVEs built with the Ubiq platform. The proposed
architecture for integrating external frameworks is designed to be
modular, utilising centralised app controllers to communicate with
one or more services which each are responsible for a specific func-
tion (e.g. image synthesis or speech-to-text). This design allows for
easy integration of new services and the ability to modify or replace
individual services without affecting the entire system. By providing
a framework for the integration of external services and frameworks,
we aim to pave the way for new and innovative VR experiences that
can enhance collaboration and communication within CVEs. In addi-
tion, this work aims to inspire future work that explores the potential
applications of these techniques for both users and researchers.

2 RELATED WORK

Decoupling system components, with separate client and server
sides, has been widely adopted in VR and augmented reality (AR)
systems to improve scalability, flexibility, and resource optimisation.
With the increasing application of computer vision and deep learning
in human-centred systems, such architectures have become increas-
ingly relevant. This is because they allow for the integration of large
and complex system components, such as computationally intensive
models, which can enable types of VR and AR experiences that were
previously only possible for systems that are tethered to high-end
desktops, or, in some cases, backpack computers [27]. To address

1



To appear in the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshop (VRW) proceedings.

U
bi

q
C

lie
nt

 (U
ni

ty
)

Se
rv

er
 (N

od
eJ

S) Ex
am

pl
e 

A
pp

lic
at

io
n Scene

Controller

TCP Connection

A
ny

 E
xt

er
na

l

Fr

am
ew

or
ks

Ex
am

pl
e 

Se
rv

ic
e 

A Controller

I/O Stream

Child ProcessChild Process Ex
am

pl
e 

Se
rv

ic
e 

BController

Child Process

I/O Stream

Figure 2: High-level architecture of the proposed system model, show-
ing an application (incl. Unity scene), services, and their interactions.
To demonstrate a typical implementation of an application, this dia-
gram shows an application that communicates with two services.

this, a large body of work has explored the use of client-server ar-
chitectures, which offload computation to either the cloud [8] or
edge-based devices through a local network [25] (e.g. smartphones).

Client-server architectures have been widely used in various
server-assisted applications, such as real-time object recogni-
tion [5,13], information extraction from scenes [2,11], rendering and
encoding [28], and localisation [15]. For example, Chatzopoulos et
al. [2] developed Hyperion, a wearable AR system that implements a
real-time text extraction application with Google Glass. To alleviate
the computational burden of the text extraction process, the proposed
system partially offloads computation to a server.

Although the concept of offloading computation to servers is
not a novel concept, currently there is no open-source framework
that enables the development of server-assisted social VR applica-
tions. To address this gap, we developed a solution that extends
the architecture of Ubiq [4], with the goal of integrating and simul-
taneously decoupling system components in a transparent manner.
This framework allows for the easy integration of external services
and frameworks by researchers and developers to enhance the func-
tionality and capabilities of VR and AR systems and provide new
opportunities for social VR research.

3 SYSTEM DESIGN

We designed a modular architecture to facilitate the integration of
new services and the ability to update or replace individual services
without affecting the entire system. At a high level, the architecture
consists of three main components: the Unity scene, applications,
and services (Figure 2). While each application should have its
own scene and ApplicationController, services are modular
and can be reused in different applications. Examples of services are
speech-to-text and image synthesis (see Section 4 for all services).

The Unity scene serves as the interface for VR users and contains
application-specific Unity components that communicate with a
server-side ApplicationController through a TCP connection,
using either Ubiq’s Networking or Logging components. These
client-side components are written in C# and ensure that outgoing
and incoming data are processed and routed correctly.

The ApplicationController is a server-side component writ-
ten in NodeJS that contains the necessary Ubiq Networking
objects to communicate with the Unity scene and acts as
the central coordination point for one or more different ser-

vices. This component interacts with each service by commu-
nicating with ServiceController objects. Furthermore, the
ApplicationController component implements any logic to pre-
process service input or post-process service output for transmission
to other services or the Unity scene.

The ServiceController is a server-side component written in
NodeJS which is responsible for providing a specific function. This
component orchestrates the data flow of one or more underlying
child processes through the I/O stream of the server’s operating
system, which carry out the computation for the service. These child
processes can be written in any programming language that can
handle communication through the I/O stream (e.g. Java, Python,
C++). As such, this allows for the integration of a wide range of
open-source frameworks into the Ubiq platform.

The source code of Ubiq-Genie has been made available publicly1

including documentation describing how services and applications
can be implemented.

4 SERVICES

We implemented several services to demonstrate the potential use
cases and applications enabled by Ubiq-Genie. This includes a
speech-to-text (STT), image synthesis, conversational text synthe-
sis, file server, and text-to-speech (TTS) service, which each rely
on child processes written in Python. As described in Section 3,
service input and output are handled by the ServiceController
component and are orchestrated by the ApplicationController
component.

• Speech-to-text (STT) generates text based on an audio stream.
This service is designed to transcribe user microphone audio,
allowing for voice-controlled interactions within the CVE. A
new child process is spawned for each peer to prevent data
congestion when multiple users join the same room. This ser-
vice is currently implemented using the Python client of Azure
Speech Service2. However, alternative (open-source) solutions
could be utilised such as Whisper [20] or DeepSpeech [14].

• Text-to-speech (TTS) generates audio based on text input.
The resulting audio is streamed over the network to the Unity
scene, which can be played by a companion script through
a specified audio source. This service is also currently im-
plemented using Azure Speech Service, but can similarly be
replaced by alternative (open-source) solutions.

• Image Synthesis generates images based on text input, using
the Hugging Face [10] implementation of the image synthe-
sis model Stable Diffusion 2.0 [21]. This service is capable
of generating images of a size of 768× 768 pixels in a few
seconds on a server with a high-end GPU (e.g. NVIDIA RTX
3080 Ti, as used in our prototypes). This service includes the
option to generate seamless images, which is especially useful
for the generation of tiled textures.

• Text Synthesis generates text that simulates a conversation
based on text-based prompts. This service is based on Chat-
GPT, approached through a third-party Python library3, as an
official API endpoint is not available at this time.

• File Server makes any file directory accessible over the net-
work using HTTP. In addition to serving files such as im-
ages, audio, or 3D models, this utility service can be used
to serve HTML pages that can interact with Ubiq through its
Networking components.

1https://github.com/UCL-VR/ubiq-genie
2https://learn.microsoft.com/azure/cognitive-services/
3https://github.com/acheong08/ChatGPT

2

https://github.com/UCL-VR/ubiq-genie
https://learn.microsoft.com/azure/cognitive-services/
https://github.com/acheong08/ChatGPT


To appear in the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshop (VRW) proceedings.

Figure 3: The texture generation prototype from a user’s perspective.
(A) After the user provides a voice prompt and the target object is
recognised, it is assigned a chequerboard pattern; (B) Once the image
synthesis process finishes, the resulting image is downloaded and
applied to the target object.

5 PROTOTYPES

We implemented two prototypes of collaborative applications to
demonstrate the potential use cases enabled by Ubiq-Genie: a texture
generation prototype and a conversational agent prototype. These
prototypes showcase how the services described in Section 4 can be
combined into a pipeline to create new and innovative VR experi-
ences that enhance interactions within a CVE. A key aspect of these
prototype applications is that they are designed to be used collabora-
tively, where multiple users can interact with the application at the
same time.

5.1 Texture Generation

This prototype application allows users to generate textures within a
CVE through voice prompts, optionally combined with ray-based
selection to select the target. To demonstrate its capabilities, we
applied this prototype to a simplified interior design task where
objects can be textured by users. The use of a server-side diffusion-
based image synthesis model allows for the generation of highly
detailed and diverse textures, enabling users to create realistic and
unique designs, without requiring the client device to perform any
computationally intensive processing.

This prototype was built with the STT, image synthesis, and file
server service. The STT service is used to transcribe user micro-
phone audio. The text output of this service is then parsed through
regular expressions, resulting in a target object identifier and a tar-
get appearance. The target object identifier is then passed to the
Unity scene, which temporarily applies a chequerboard pattern to
the object that is tagged with the specified identifier (e.g. ”couch”).

At the same time, on the server, the text describing the target
appearance is passed to the image synthesis service, which generates
an image using Stable Diffusion 2.0. The resulting image is then
made available to the Unity scene through the file server service, of
which a hyperlink is sent to the Unity client in a network message.
The Unity scene then downloads the texture, generates a mipmap
for the texture, and applies it to the target object (Figure 3B).

Interaction Users can specify the desired appearance of an
object through voice prompts, such as “Make the floor look like
lava”. In addition, instead of specifying the target object verbally,
users can use their controller for ray-based selection. Users can
use this selection method by pointing their controller at the target
object and pressing and holding the trigger button. While the trigger
button is held, users can specify the desired appearance of the object
verbally (e.g. “Make this look like lava”). The resulting target object
identifier is then sent to the server-side ApplicationController
as a log message. Ray-based selection is particularly useful for
selecting abstract objects or submeshes of complex objects, such as
the knob of a door.

Figure 4: The conversational agent prototype from the user’s perspec-
tive. (A) The agent’s state while listening to the user; (B) The agent’s
state while responding to the user, including gesturing and a speech
indicator.

5.2 Conversational Agent

This prototype application allows users to interact with a conversa-
tional agent through voice prompts in a CVE (Figure 4). The agent
is represented in the CVE with a robot-like avatar. The text synthesis
model that drives the agent is made aware of what is said by who,
which enables a wide range of multi-party conversations, such as
debates, quizzes, and discussions.

The prototype was built with the STT, text synthesis, and TTS
service. After the initialisation of the text synthesis model, the model
is fed with a prompt that precisely specifies the script-like syntax that
should be used when receiving and sending text data. Specifically, it
is told that its name is Agent, that all text should be prefixed with a
source and a target avatar name (e.g., Agent -> Bob: ...), and that it
should keep note of who is part of the conversation. This gives the
conversational agent awareness of what is said by who in the CVE,
enabling multi-party conversations.

The STT service is used to transcribe user microphone audio. The
text output of this service is prefixed with the avatar name of the
respective user and the target user. The prefixed text is then passed
to the text synthesis service, which generates text that simulates a
real-world dialogue. The text output generated by this service, with
a prefix including the target avatar, is then passed to the TTS service,
which generates an audio version of the text output. The audio
output is then streamed to the Unity scene along with information
specifying the target avatar, where it is played.

Interaction Users can interact with the agent through voice
prompts, which can range from simple questions such as “Who was
the first person to step foot on the moon?” through to more complex
questions including other user’s names such as “Please explain the
role of squeezed states in quantum optics to Bob”. Users can activate
the transmission of audio data by pressing and holding the grip
button of their controller.

The agent’s audio response is spatialised based on its position
within the CVE. Furthermore, when the agent speaks, it gestures its
hands based on prerecorded motion and a visual speech indicator
appears near its head (Figure 4B). Furthermore, the agent turns
towards users who speak to indicate that it listens to what is said. It
also turns towards specific users when this is specified in the output
of the text synthesis service.

6 OPPORTUNITIES AND FUTURE WORK

The proposed architecture to integrate external frameworks into the
Ubiq social VR platform presents a wide range of opportunities for
future research and development. In this section, we discuss several
potential opportunities for building upon this work, including the
expansion and improvement of the proposed services, applications,
and architecture.

3



To appear in the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshop (VRW) proceedings.

6.1 Services and Applications
Expanding the services and applications offered by Ubiq-Genie
could lead to novel types of VR experiences that enhance collabora-
tion and communication within CVEs. This includes the integration
of other generative models for content creation, the use of experi-
menter dashboards for user behaviour analysis, and the potential of
online machine learning.

Generative Models Incorporating other generative models in
Ubiq-Genie, beyond the employed image and text synthesis mod-
els, could lead to interesting applications. Potential models to be
integrated could be capable of synthesising 3D models from text
or images such as Point-E [16], personalised speech from text such
as VALL-E [24], or audio from text or images such as Make-An-
Audio [9] and MusicLM [1]. In addition, the currently implemented
services could be expanded to build more advanced types of appli-
cations and experiences. Examples of this include the generation
of additional texture maps (e.g. normal and specular maps) and
the generation of entire virtual environments [3]. Furthermore, the
Ubiq-Genie architecture provides straightforward techniques for
communication among services, which could enable interesting op-
portunities such as image synthesis based on complex descriptions
provided by the text synthesis service or audio synthesis based on
the output of the image synthesis service.

Behaviour Analysis Another potential direction of future work
is the exploration of experimenter dashboards built with Ubiq-Genie.
These dashboards could allow researchers to control their experi-
ments and analyse user behaviour in real time, providing valuable
insights for the evaluation of VR applications. Real-time metrics
could be included to inform researchers about the level of user activ-
ity (e.g. head rotation velocity and words spoken [17]), communica-
tion style (e.g., recognition of F-formations [22]), emotional state
(e.g., sentiment analysis using natural-language processing [7]), and
user experience (e.g. the objective representations of presence and
co-presence [18]). This could be particularly useful in observational,
pilot, and remote studies [12, 23].

6.2 Architecture
Aside from the wide range of potential applications, depending on
the needs, there are several ways that the Ubiq-Genie architecture
could be improved in the future. For example, in terms of scalability,
latency, and input sources.

Input Sources The prototype applications currently rely on
users providing input through voice prompts and basic controller-
based interactions. However, other input sources could be integrated,
such as hand tracking, facial expressions, or body tracking. The data
provided by these input sources could not only be used to expand the
user interfaces of applications but could also be used to incorporate
users’ expressions and emotions in the input of generative models,
which could be used to adapt their output.

Furthermore, visual data from the sensors of VR or AR head-
mounted displays (HMDs) may be used to enable server-assisted
applications, including real-time object recognition, semantic seg-
mentation, and 3D reconstruction, which could enable interesting
data-driven interaction capabilities [26].

Latency and Scalability The Ubiq-Genie architecture and pro-
totypes are designed to be modular and to handle situations where
multiple users interact with it at the same time. However, there
are opportunities for improvement in terms of reducing latency and
increasing scalability. For instance, for CVEs where very large
groups of people gather and interact, the architecture could be op-
timised to handle incoming and outgoing data in more efficient or
distributed ways. For instance, the image synthesis service currently
can only generate one image at a time, which could be parallelised
to allow for multiple requests. This could potentially be achieved

through the integration of production-grade container and orchestra-
tion systems4,5. Future work could formally evaluate the limits of
Ubiq-Genie related to latency and scalability.

7 CONCLUSION

This paper presents Ubiq-Genie, a system for the integration of
external frameworks with the Ubiq social VR platform. The Ubiq-
Genie system architecture is designed to be modular, allowing for
the easy integration of services and providing mechanisms to offload
computationally intensive processes to a server. We present two
prototypes of collaborative applications built using Ubiq-Genie: a
voice-controlled texture generation method and a voice-controlled
conversational agent.

By providing techniques for integrating external services and
frameworks, we aim to pave the way for new and innovative VR ex-
periences that can enhance collaboration and communication within
CVEs. Additionally, we aim to inspire further research that explores
the potential applications of the described techniques for both users
and researchers.

Overall, the proposed system architecture and the implemented
prototypes demonstrate the potential of integrating external (open-
source) frameworks into social VR, which can enable a wide range
of enhanced experiences. We hope that the Ubiq-Genie system archi-
tecture can serve as a starting point for researchers and developers
to further explore the potential of integrating external frameworks
and services into social VR.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s Hori-
zon 2020 Research and Innovation program under grant agreement
No 739578.

REFERENCES

[1] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Cail-
lon, Q. Huang, A. Jansen, A. Roberts, M. Tagliasacchi, M. Sharifi,
N. Zeghidour, and C. Frank. MusicLM: Generating Music From Text,
Jan. 2023. arXiv:2301.11325 [cs, eess]. doi: 10.48550/arXiv.2301.
11325

[2] D. Chatzopoulos, C. Bermejo, Z. Huang, A. Butabayeva, R. Zheng,
M. Golkarifard, and P. Hui. Hyperion: A Wearable Augmented Reality
System for Text Extraction and Manipulation in the Air. In Proceedings
of the 8th ACM on Multimedia Systems Conference, pp. 284–295. ACM,
Taipei Taiwan, June 2017. doi: 10.1145/3083187.3084017

[3] S. Fox. Stable Diffusion VR, Oct. 2022.
[4] S. J. Friston, B. J. Congdon, D. Swapp, L. Izzouzi, K. Brandstätter,

D. Archer, O. Olkkonen, F. J. Thiel, and A. Steed. Ubiq: A System to
Build Flexible Social Virtual Reality Experiences. In Proceedings of
the 27th ACM Symposium on Virtual Reality Software and Technology,
VRST ’21, pp. 1–11. Association for Computing Machinery, New
York, NY, USA, Dec. 2021. doi: 10.1145/3489849.3489871

[5] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and L. Van Gool.
Server-side object recognition and client-side object tracking for mobile
augmented reality. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition - Workshops, pp. 1–8, June
2010. ISSN: 2160-7516. doi: 10.1109/CVPRW.2010.5543248

[6] GitHub. Octoverse 2022: The state of open source, 2022.
[7] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd. spaCy:

Industrial-strength natural language processing in python. 2020. doi:
10.5281/zenodo.1212303

[8] B.-R. Huang, C. H. Lin, and C.-H. Lee. Mobile augmented reality
based on cloud computing. In and Identification Anti-counterfeiting,
Security, pp. 1–5, Aug. 2012. ISSN: 2163-5056. doi: 10.1109/ICASID
.2012.6325354

[9] R. Huang, J. Huang, D. Yang, Y. Ren, L. Liu, M. Li, Z. Ye, J. Liu,
X. Yin, and Z. Zhao. Make-An-Audio: Text-To-Audio Generation with

4Docker (https://docker.com/)
5Kubernetes (https://kubernetes.io/)

4

https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://doi.org/10.1145/3083187.3084017
https://twitter.com/ScottieFoxTTV/status/1581359080169361408
https://twitter.com/ScottieFoxTTV/status/1581359080169361408
https://twitter.com/ScottieFoxTTV/status/1581359080169361408
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1145/3489849.3489871
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248
https://doi.org/10.1109/CVPRW.2010.5543248
https://octoverse.github.com/
https://octoverse.github.com/
https://octoverse.github.com/
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.1109/ICASID.2012.6325354
https://doi.org/10.48550/arXiv.2301.12661
https://doi.org/10.48550/arXiv.2301.12661
https://doi.org/10.48550/arXiv.2301.12661
https://doi.org/10.48550/arXiv.2301.12661
https://doi.org/10.48550/arXiv.2301.12661
https://docker.com/)
https://doi.org/10.48550/arXiv.2301.12661
https://kubernetes.io/)


To appear in the 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshop (VRW) proceedings.

Prompt-Enhanced Diffusion Models, Jan. 2023. arXiv:2301.12661 [cs,
eess]. doi: 10.48550/arXiv.2301.12661

[10] Hugging Face. huggingface/diffusers, Jan. 2023. original-date: 2022-
05-30T16:04:02Z.

[11] A. Khurshid, S. Cleger, and R. Grunitzki. A Scene Classification
Approach for Augmented Reality Devices. In C. Stephanidis, J. Y. C.
Chen, and G. Fragomeni, eds., HCI International 2020 – Late Breaking
Papers: Virtual and Augmented Reality, Lecture Notes in Computer
Science, pp. 164–177. Springer International Publishing, Cham, 2020.
doi: 10.1007/978-3-030-59990-4 14

[12] J. Lee, R. Natarrajan, S. S. Rodriguez, P. Panda, and E. Ofek. Remote-
Lab: A VR Remote Study Toolkit. In Proceedings of the 35th Annual
ACM Symposium on User Interface Software and Technology, UIST
’22, pp. 1–9. Association for Computing Machinery, New York, NY,
USA, Oct. 2022. doi: 10.1145/3526113.3545679

[13] L. Liu, H. Li, and M. Gruteser. Edge Assisted Real-time Object Detec-
tion for Mobile Augmented Reality. In The 25th Annual International
Conference on Mobile Computing and Networking, pp. 1–16. ACM,
Los Cabos Mexico, Aug. 2019. doi: 10.1145/3300061.3300116

[14] Mozilla. Project DeepSpeech, 2021. original-date: 2016-06-
02T15:04:53Z.

[15] Niantic. Lightship VPS, Sept. 2022.
[16] A. Nichol, H. Jun, P. Dhariwal, P. Mishkin, and M. Chen. Point-E: A

System for Generating 3D Point Clouds from Complex Prompts, Dec.
2022. arXiv:2212.08751 [cs]. doi: 10.48550/arXiv.2212.08751

[17] N. Numan and A. Steed. Exploring User Behaviour in Asymmetric Col-
laborative Mixed Reality. In Proceedings of the 28th ACM Symposium
on Virtual Reality Software and Technology, p. 11. ACM, Tsukuba,
Japan, 2022. doi: 10.1145/3562939.3565630

[18] M. Ochs, S. Jain, and P. Blache. Toward an Automatic Prediction of the
Sense of Presence in Virtual Reality Environment. In 6th International
Conference on Human-Agent Interaction (HAI-2018). Southampton,
United Kingdom, Dec. 2018.

[19] OpenAI. ChatGPT: Optimizing Language Models for Dialogue, Nov.
2022.

[20] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever. Robust Speech Recognition via Large-Scale Weak Super-
vision, Dec. 2022. arXiv:2212.04356 [cs, eess]. doi: 10.48550/arXiv.
2212.04356

[21] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10674–10685, June 2022. ISSN: 2575-7075. doi: 10.
1109/CVPR52688.2022.01042

[22] F. Setti, C. Russell, C. Bassetti, and M. Cristani. F-Formation Detection:
Individuating Free-Standing Conversational Groups in Images. PLoS
ONE, 10(5):e0123783, May 2015. doi: 10.1371/journal.pone.0123783

[23] A. Steed, D. Archer, K. Brandstätter, B. J. Congdon, S. Friston, P. Gana-
pathi, D. Giunchi, L. Izzouzi, G. W. W. Park, D. Swapp, and F. J. Thiel.
Lessons learnt running distributed and remote mixed reality experi-
ments. Frontiers in Computer Science, 4, 2023.

[24] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen, Y. Liu,
H. Wang, J. Li, L. He, S. Zhao, and F. Wei. Neural Codec Lan-
guage Models are Zero-Shot Text to Speech Synthesizers, Jan. 2023.
arXiv:2301.02111 [cs, eess]. doi: 10.48550/arXiv.2301.02111

[25] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser. Service Entity
Placement for Social Virtual Reality Applications in Edge Computing.
In IEEE INFOCOM 2018 - IEEE Conference on Computer Commu-
nications, pp. 468–476, Apr. 2018. doi: 10.1109/INFOCOM.2018.
8486411

[26] W. Willett, B. A. Aseniero, S. Carpendale, P. Dragicevic, Y. Jansen,
L. Oehlberg, and P. Isenberg. Perception! Immersion! Empowerment!
Superpowers as Inspiration for Visualization. IEEE Transactions on
Visualization and Computer Graphics, 28(1):22–32, Jan. 2022. doi: 10.
1109/TVCG.2021.3114844

[27] J. J. Yang, C. Holz, E. Ofek, and A. D. Wilson. DreamWalker: Sub-
stituting Real-World Walking Experiences with a Virtual Reality. In
Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology, UIST ’19, pp. 1093–1107. Association for
Computing Machinery, New York, NY, USA, Oct. 2019. doi: 10.1145/

3332165.3347875
[28] L. Zhang, A. Sun, R. Shea, J. Liu, and M. Zhang. Rendering multi-

party mobile augmented reality from edge. In Proceedings of the 29th
ACM Workshop on Network and Operating Systems Support for Digital
Audio and Video, pp. 67–72. ACM, Amherst Massachusetts, June 2019.
doi: 10.1145/3304112.3325612

5

https://doi.org/10.48550/arXiv.2301.12661
https://doi.org/10.48550/arXiv.2301.12661
https://doi.org/10.48550/arXiv.2301.12661
https://doi.org/10.48550/arXiv.2301.12661
https://doi.org/10.48550/arXiv.2301.12661
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1007/978-3-030-59990-4_14
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3526113.3545679
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1145/3300061.3300116
https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
https://lightship.dev/products/vps/
https://lightship.dev/products/vps/
https://lightship.dev/products/vps/
https://doi.org/10.48550/arXiv.2212.08751
https://doi.org/10.48550/arXiv.2212.08751
https://doi.org/10.48550/arXiv.2212.08751
https://doi.org/10.48550/arXiv.2212.08751
https://doi.org/10.48550/arXiv.2212.08751
https://doi.org/10.48550/arXiv.2212.08751
https://doi.org/10.48550/arXiv.2212.08751
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://doi.org/10.1145/3562939.3565630
https://hal.archives-ouvertes.fr/hal-01907590
https://hal.archives-ouvertes.fr/hal-01907590
https://hal.archives-ouvertes.fr/hal-01907590
https://hal.archives-ouvertes.fr/hal-01907590
https://hal.archives-ouvertes.fr/hal-01907590
https://hal.archives-ouvertes.fr/hal-01907590
https://hal.archives-ouvertes.fr/hal-01907590
https://hal.archives-ouvertes.fr/hal-01907590
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.1371/journal.pone.0123783
https://doi.org/10.1371/journal.pone.0123783
https://www.frontiersin.org/articles/10.3389/fcomp.2022.966319
https://www.frontiersin.org/articles/10.3389/fcomp.2022.966319
https://www.frontiersin.org/articles/10.3389/fcomp.2022.966319
https://www.frontiersin.org/articles/10.3389/fcomp.2022.966319
https://www.frontiersin.org/articles/10.3389/fcomp.2022.966319
https://www.frontiersin.org/articles/10.3389/fcomp.2022.966319
https://www.frontiersin.org/articles/10.3389/fcomp.2022.966319
https://doi.org/10.48550/arXiv.2301.02111
https://doi.org/10.48550/arXiv.2301.02111
https://doi.org/10.48550/arXiv.2301.02111
https://doi.org/10.48550/arXiv.2301.02111
https://doi.org/10.48550/arXiv.2301.02111
https://doi.org/10.48550/arXiv.2301.02111
https://doi.org/10.48550/arXiv.2301.02111
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/INFOCOM.2018.8486411
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1109/TVCG.2021.3114844
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3332165.3347875
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3304112.3325612

	Introduction
	Related Work
	System Design
	Services
	Prototypes
	Texture Generation
	Conversational Agent

	Opportunities and Future Work
	Services and Applications
	Architecture

	Conclusion

